ProCurve
Series 3500yl Switches
Series 5400zl Switches
6200yl Switch
Publication Number
5991-3826
July 2006

Applicable Products
ProCurve Switch 5406zl (J8697A)
ProCurve Switch 5412zl (J8698A)
ProCurve Switch 3500yl-24G-PWR Intelligent Edge (J8692A)
ProCurve Switch 3500yl-48G-PWR Intelligent Edge (J8693A)
ProCurve Switch 6200yl-24G (J8992A)

Trademark Credits
Microsoft, Windows, and Microsoft Windows NT are US registered trademarks of Microsoft Corporation. Java™ is a US trademark of Sun Microsystems, Inc.

Disclaimer
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD COMPANY MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

Warranty
See the Customer Support/Warranty booklet included with the product.

A copy of the specific warranty terms applicable to your Hewlett-Packard products and replacement parts can be obtained from your HP Sales and Service Office or authorized dealer.
Contents

Product Documentation

About Your Switch Manual Set .............................................. xix
Feature Index ................................................................. xx

1 Getting Started

Contents ................................................................. 1-1
Introduction ............................................................. 1-2
Conventions ............................................................... 1-2
  Feature Descriptions by Model ..................................... 1-2
  Command Syntax Statements ....................................... 1-3
  Command Prompts ..................................................... 1-3
  Screen Simulations .................................................. 1-4
  Port Identity Examples ............................................. 1-4
  Configuration and Operation Examples ......................... 1-4
  Keys ........................................................................... 1-4
Sources for More Information ............................................. 1-5
  Getting Documentation From the Web ......................... 1-7
  Online Help ............................................................ 1-7
Need Only a Quick Start? .................................................. 1-8
  IP Addressing .......................................................... 1-8
To Set Up and Install the Switch in Your Network .............. 1-9
  Physical Installation .................................................. 1-9
  Premium Edge Switch Features .................................... 1-9
2 Selecting a Management Interface

Contents .......................................................... 2-1
Overview ......................................................... 2-2
Understanding Management Interfaces ...................... 2-2
Advantages of Using the Menu Interface ...................... 2-3
Advantages of Using the CLI .................................... 2-4
  General Benefits .............................................. 2-4
  Information on Using the CLI ................................. 2-4
Advantages of Using the Web Browser Interface .......... 2-5
Advantages of Using ProCurve Manager or ProCurve Manager Plus ........................................ 2-7
  Custom Login Banners for the Console and Web Browser Interfaces ........................................ 2-10
  Banner Operation with Telnet, Serial, or SSHv2 Access .................................................. 2-11
  Banner Operation with Web Browser Access ................... 2-11
  Configuring and Displaying a Non-Default Banner .......... 2-11
  Example of Configuring and Displaying a Banner .......... 2-12
  Operating Notes .............................................. 2-15

3 Using the Menu Interface

Contents .......................................................... 3-1
Overview ......................................................... 3-2
Starting and Ending a Menu Session .......................... 3-3
  How To Start a Menu Interface Session ....................... 3-4
  How To End a Menu Session and Exit from the Console: 3-5
Main Menu Features ............................................. 3-7
Screen Structure and Navigation ............................... 3-9
Rebooting the Switch .......................................... 3-12
Menu Features List ............................................. 3-14
Where To Go From Here ........................................ 3-15
4 Using the Command Line Interface (CLI)

Contents ........................................................................................................ 4-1
Overview ........................................................................................................ 4-2
Accessing the CLI ......................................................................................... 4-2
Using the CLI ................................................................................................. 4-2
  Privilege Levels at Logon ........................................................................... 4-3
  Privilege Level Operation ......................................................................... 4-4
    Operator Privileges .................................................................................. 4-4
    Manager Privileges .................................................................................. 4-5
  How To Move Between Levels ................................................................... 4-7
Listing Commands and Command Options .................................................... 4-8
  Listing Commands Available at Any Privilege Level ............................... 4-8
  Listing Command Options ......................................................................... 4-10
Displaying CLI “Help” .................................................................................... 4-11
Configuration Commands and the Context Configuration Modes ............... 4-13

CLI Control and Editing ................................................................................. 4-16

5 Using the ProCurve Web Browser Interface

Contents ........................................................................................................ 5-1
Overview ........................................................................................................ 5-2
General Features ........................................................................................... 5-3
Starting a Web Browser
  Interface Session with the Switch ............................................................... 5-4
    Using a Standalone Web Browser in a PC or UNIX Workstation .......... 5-4
    Using ProCurve Manager (PCM) or ProCurve Manager Plus (PCM+) .... 5-5
Tasks for Your First ProCurve Web Browser Interface Session ................. 5-7
  Viewing the “First Time Install” Window .................................................... 5-7
  Security: Creating Usernames and Passwords in the Browser Interface .... 5-8
    Entering a User Name and Password ...................................................... 5-10
    Using a User Name .................................................................................. 5-10
    If You Lose the Password ...................................................................... 5-10
  Online Help for the Web Browser Interface .............................................. 5-11
Support/Mgmt URLs Feature ........................................ 5-12
  Support URL ..................................................... 5-13
  Help and the Management Server URL ....................... 5-13
  Using the PCM Server for Switch Web Help ................... 5-14

Status Reporting Features ........................................ 5-16
  The Overview Window .......................................... 5-16
  The Port Utilization and Status Displays ...................... 5-17
    Port Utilization .............................................. 5-17
    Port Status .................................................. 5-19
  The Alert Log .................................................. 5-20
    Sorting the Alert Log Entries ................................ 5-20
    Alert Types and Detailed Views ............................... 5-21
  The Status Bar ................................................ 5-22
  Setting Fault Detection Policy ................................. 5-24

6 Switch Memory and Configuration

Contents .......................................................... 6-1

Overview .......................................................... 6-3

Overview of Configuration File Management .................... 6-3

Using the CLI To Implement Configuration Changes ............ 6-6

Using the Menu and Web Browser Interfaces To Implement Configuration Changes .................. 6-9

  Menu: Implementing Configuration Changes .................... 6-9
    Using Save and Cancel in the Menu Interface ................. 6-10
    Rebooting from the Menu Interface ........................... 6-11
  Web: Implementing Configuration Changes ...................... 6-12

Using Primary and Secondary Flash Image Options ............. 6-13

  Displaying the Current Flash Image Data ...................... 6-13
  Switch Software Downloads .................................... 6-15
  Local Switch Software Replacement and Removal ............... 6-16
  Rebooting the Switch ......................................... 6-18
  Operating Notes ................................................. 6-21

Multiple Configuration Files .................................... 6-22

  General Operation .............................................. 6-23
Transitioning to Multiple Configuration Files .......................... 6-25
Listing and Displaying Startup-Config Files ............................. 6-26
  Viewing the Startup-Config File Status with Multiple
  Configuration Enabled ................................................ 6-26
  Displaying the Content of A Specific Startup-Config File ....... 6-26
Changing or Overriding the Reboot Configuration Policy .......... 6-27
Managing Startup-Config Files in the Switch .......................... 6-29
  Renaming an Existing Startup-Config File ......................... 6-30
  Creating a New Startup-Config File ............................. 6-30
  Erasing a Startup-Config File ................................. 6-32
  Using the Clear + Reset Button Combination To Reset the
  Switch to Its Default Configuration ............................ 6-33
Transferring Startup-Config Files To or From a Remote Server ... 6-35
  TFTP: Copying a Configuration File to a Remote Host ........... 6-35
  TFTP: Copying a Configuration File from a Remote Host ....... 6-35
  Xmodem: Copying a Configuration File to a Serially
  Connected Host .................................................. 6-36
  Xmodem: Copying a Configuration from a Serially
  Connected Host .................................................. 6-36
Operating Notes for Multiple Configuration Files .................. 6-36

7 Interface Access and System Information

Contents ............................................................................. 7-1
Overview ........................................................................... 7-2
Interface Access: Console/Serial Link, Web, and Inbound Telnet 7-3
  Menu: Modifying the Interface Access ............................. 7-4
  CLI: Modifying the Interface Access .............................. 7-5
Denying Interface Access by Terminating Remote Management
  Sessions ................................................................. 7-9
System Information ............................................................ 7-10
  Menu: Viewing and Configuring System Information ............ 7-11
  CLI: Viewing and Configuring System Information ............. 7-12
  Web: Configuring System Parameters ............................ 7-15
### 8 Configuring IP Addressing

#### Contents
- Overview ......................................................... 8-2
- IP Configuration ................................................. 8-2
  - Just Want a Quick Start with IP Addressing? ................. 8-3
  - IP Addressing with Multiple VLANs .......................... 8-4
  - Menu: Configuring IP Address, Gateway, and Time-To-Live (TTL) 8-5
  - CLI: Configuring IP Address, Gateway, and Time-To-Live (TTL) 8-6
  - Web: Configuring IP Addressing ................................ 8-10
  - How IP Addressing Affects Switch Operation .................. 8-11
    - DHCP/Bootp Operation ...................................... 8-12
    - Network Preparations for Configuring DHCP/Bootp ...... 8-14
- IP Preserve: Retaining VLAN-1 IP Addressing Across Configuration File Downloads ............. 8-15
  - Operating Rules for IP Preserve .............................. 8-15
  - Enabling IP Preserve ......................................... 8-16

#### 9 Time Protocols

#### Contents
- Overview ......................................................... 9-2
- TimeP Time Synchronization ..................................... 9-2
- SNTP Time Synchronization ...................................... 9-2
- Selecting a Time Synchronization Protocol or Turning Off Time Protocol Operation ............. 9-3
  - General Steps for Running a Time Protocol on the Switch: 9-3
  - Disabling Time Synchronization ................................ 9-4
- SNTP: Viewing, Selecting, and Configuring ....................... 9-4
  - Menu: Viewing and Configuring SNTP ......................... 9-5
  - CLI: Viewing and Configuring SNTP ............................ 9-8
    - Viewing the Current SNTP Configuration .................... 9-8
    - Configuring (Enabling or Disabling) the SNTP Mode ...... 9-10
- TimeP: Viewing, Selecting, and Configuring ....................... 9-15
  - Menu: Viewing and Configuring TimeP ......................... 9-16
  - CLI: Viewing and Configuring TimeP ............................ 9-18
Overview of Operation for Series 5400zl Switches .......... 11-5
Related Publications .................................................. 11-6

General PoE Operation .................................................. 11-7
Configuration Options for the Series 5400zl Switches .......... 11-7
PD Support ................................................................. 11-8
Determining the Amount of PoE Power Available .............. 11-9
Power Priority Operation .............................................. 11-10
  When Is Power Allocation Prioritized? ......................... 11-10
  How Is Power Allocation Prioritized? ......................... 11-10
  PoE Priority With Two or More Modules ..................... 11-11

Configuring PoE Operation ........................................... 11-13
Changing the PoE Port Priority Level .............................. 11-13
Disabling or Re-Enabling PoE Port Operation ...................... 11-14
Enabling Support for Pre-Standard Devices ...................... 11-14
Changing the Threshold for Generating a Power Notice ......... 11-15
Configuring Optional PoE Port Identifiers ....................... 11-16

Viewing PoE Configuration and Status ............................. 11-19
Displaying the Switch’s Global PoE Power Status ............... 11-19
Displaying an Overview of PoE Status on All Ports .......... 11-20
Displaying the PoE Status on Specific Ports ................... 11-21

Planning and Implementing a PoE Configuration ................. 11-23
Assigning PoE Ports to VLANs ...................................... 11-23
Applying Security Features to PoE Configurations .............. 11-23
Assigning Priority Policies to PoE Traffic ...................... 11-24
Calculating the Maximum Load for a PoE Module ............... 11-25
When a Power Supply Fails ........................................... 11-26

PoE Operating Notes ................................................... 11-27
PoE Event Log Messages .............................................. 11-28
  “Informational” PoE Event-Log Messages ..................... 11-28
  “Warning” PoE Event-Log Messages ......................... 11-29
12 Port Trunking

Contents ................................................................. 12-1
Overview ................................................................. 12-2
Port Trunk Features and Operation .............................. 12-4
Trunk Configuration Methods ....................................... 12-4
Menu: Viewing and Configuring a Static Trunk Group ....... 12-9
CLI: Viewing and Configuring Port Trunk Groups ............ 12-11
  Using the CLI To View Port Trunks .............................. 12-11
  Using the CLI To Configure a Static or Dynamic Trunk Group ... 12-14
Web: Viewing Existing Port Trunk Groups ................. 12-17
Trunk Group Operation Using LACP ............................... 12-18
  Default Port Operation ........................................... 12-21
  LACP Notes and Restrictions .................................... 12-22
Trunk Group Operation Using the “Trunk” Option .......... 12-26
How the Switch Lists Trunk Data ................................. 12-27
Outbound Traffic Distribution Across Trunked Links .......... 12-27

13 Port Traffic Controls

Contents ................................................................. 13-1
Overview ................................................................. 13-2
All-Traffic Rate-Limiting ............................................ 13-3
  Introduction ......................................................... 13-3
  Rate-Limiting Operation ......................................... 13-3
    Configuring Inbound Rate-Limiting .......................... 13-4
    Displaying the Current Rate-Limit Configuration .......... 13-5
    Operating Notes for Rate-Limiting ......................... 13-6
ICMP Rate-Limiting .................................................. 13-9
  Terminology ....................................................... 13-9
  Effect of ICMP Rate-Limiting ................................... 13-9
  Operating Notes for ICMP Rate-Limiting .................... 13-15
Guaranteed Minimum Bandwidth (GMB) ......................... 13-18
  Introduction ....................................................... 13-19
Terminology .......................................................... 13-19
GMB Operation ...................................................... 13-19
   Configuring Guaranteed Minimum Bandwidth for Outbound Traffic ................................ 13-21
   Displaying the Current Guaranteed Minimum Bandwidth Configuration ............................ 13-25
GMB Operating Notes ............................................... 13-26

Jumbo Packets ....................................................... 13-27
Terminology .......................................................... 13-27
Operating Rules ...................................................... 13-28
Configuring Jumbo Packet Operation ................................ 13-29
   Overview ............................................................. 13-29
   Viewing the Current Jumbo Configuration ..................................................... 13-30
   Enabling or Disabling Jumbo Traffic on a VLAN ................................................. 13-32
Operating Notes for Jumbo Traffic-Handling .......................... 13-32
Troubleshooting ...................................................... 13-35

14 Configuring for Network Management Applications

Contents ..................................................................... 14-1

Using SNMP Tools To Manage the Switch ............................... 14-3
   Overview ............................................................. 14-3
   SNMP Management Features ...................................... 14-4
   Configuring for SNMP version 1 and 2c Access to the Switch .................. 14-4
   Configuring for SNMP Version 3 Access to the Switch ............................... 14-5
SNMP Version 3 Commands ............................................. 14-6
   Enabling SNMPv3 ..................................................... 14-7
   SNMPv3 Users ........................................................ 14-7
   Group Access Levels .................................................. 14-10
   SNMPv3 Communities ................................................. 14-11
   Menu: Viewing and Configuring non-SNMP version 3 Communities .................. 14-13
   CLI: Viewing and Configuring SNMP Community Names ............................... 14-14
SNMPv3 Notification and Traps ........................................... 14-16
   SNMPv1 and SNMPv2c Trap Features ............................................. 14-19
   CLI: Configuring and Displaying Trap Receivers ............................................. 14-19
A File Transfers

Contents ........................................................................................................... A-1
Overview ........................................................................................................... A-3

Downloading Switch Software ............................................................................. A-3
  General Software Download Rules ................................................................. A-4
  Using TFTP To Download Switch Software from a Server ....................... A-4
    Menu: TFTP Download from a Server to Primary Flash ....................... A-5
    CLI: TFTP Download from a Server to Flash ........................................... A-6
  Using Secure Copy and SFTP ....................................................................... A-8
    How It Works .............................................................................................. A-9
    The SCP/SFTP Process ............................................................................. A-10
  Disable TFTP and Auto-TFTP for Enhanced Security ............................... A-10
  Command Options ....................................................................................... A-12
  Authentication ............................................................................................. A-13
  SCP/SFTP Operating Notes ......................................................................... A-13

Using Xmodem to Download Switch Software From a PC or UNIX Workstation ........................................................................................................ A-15
  Menu: Xmodem Download to Primary Flash ............................................ A-15
  CLI: Xmodem Download from a PC or UNIX Workstation to
    Primary or Secondary Flash ..................................................................... A-16

Switch-to-Switch Download ............................................................................. A-17
  Menu: Switch-to-Switch Download to Primary Flash ................................. A-17
  CLI: Switch-To-Switch Downloads ............................................................... A-18

Using PCM+ to Update Switch Software ........................................................... A-20

Troubleshooting TFTP Downloads .................................................................... A-20

Transferring Switch Configurations and ACL Command Files .......................... A-21
  TFTP: Copying a Configuration from a Remote Host ................................. A-22
  TFTP: Copying a Configuration File to a Remote Host ............................ A-22
  TFTP: Uploading an ACL Command File from a TFTP Server ............... A-23
  Xmodem: Copying a Configuration File from the Switch to a
    Serially Connected PC or UNIX Workstation ....................................... A-25
  Xmodem: Copying a Configuration File from a Serially
    Connected PC or UNIX Workstation ..................................................... A-25

Copying Diagnostic Data to a Remote
Host, PC or UNIX Workstation ........................................................................ A-27
## B Monitoring and Analyzing Switch Operation

### Contents
- Overview .......................................................... B-1
- Status and Counters Data ........................................ B-3
  - Menu Access To Status and Counters .................. B-5
  - General System Information ........................... B-6
    - Menu Access ........................................ B-6
    - CLI Access ........................................ B-6
  - Switch Management Address Information ............ B-7
    - Menu Access ........................................ B-7
    - CLI Access ........................................ B-7
- Module Information ............................................. B-8
  - Menu: Displaying Port Status ......................... B-8
  - CLI Access ........................................ B-9
- Port Status .................................................... B-10
  - Menu: Displaying Port Status ......................... B-10
  - CLI Access ........................................ B-10
  - Web Access ........................................ B-10
- Viewing Port and Trunk Group Statistics and Flow Control Status B-11
  - Menu Access to Port and Trunk Statistics .......... B-12
  - CLI Access To Port and Trunk Group Statistics .... B-13
  - Web Browser Access To View Port and Trunk Group Statistics B-13
- Viewing the Switch’s MAC Address Tables ............ B-14
  - Menu Access to the MAC Address Views and Searches .... B-14
  - CLI Access for MAC Address Views and Searches .... B-17
- Spanning Tree Protocol (MSTP) Information .......... B-18
  - CLI Access to MSTP Data ................................ B-18
- Internet Group Management Protocol (IGMP) Status .... B-19
- VLAN Information ............................................. B-20
- Web Browser Interface Status Information ............ B-22
C Troubleshooting

Contents ......................................................... C-1
Overview ..................................................... C-3
Troubleshooting Approaches ................................ C-4

Browser or Telnet Access Problems ......................... C-5

Unusual Network Activity ...................................... C-7
General Problems .............................................. C-7
802.1Q Prioritization Problems ............................... C-8
ACL Problems ................................................ C-8
IGMP-Related Problems ....................................... C-13
LACP-Related Problems ..................................... C-13
Mesh-Related Problems ..................................... C-14
Port-Based Access Control (802.1X)-Related Problems ... C-14
QoS-Related Problems ....................................... C-17
Radius-Related Problems ................................... C-17
Spanning-Tree Protocol (MSTP) and Fast-Uplink Problems C-18
SSH-Related Problems ...................................... C-19
TACACS-Related Problems ................................ C-21
TimeP, SNTP, or Gateway Problems ....................... C-23
VLAN-Related Problems ................................... C-23
Fan Failure .................................................. C-25

Using the Event Log To Identify Problem Sources ........ C-26
Menu: Entering and Navigating in the Event Log .......... C-28
CLI: Listing Events ......................................... C-29
CLI: Turn Event Numbering On ............................ C-29
Reducing Duplicate Event Log and SNMP Trap Messages C-30

Debug and Syslog Messaging Operation ..................... C-33
Debug Command Operation ................................ C-34
Debug Types ............................................... C-35
Debug Destinations ........................................ C-37
Syslog Operation ........................................ C-38
Viewing the Debug Configuration ..................... C-39
Steps for Configuring Debug and Syslog Messaging .... C-39
Operating Notes for Debug and Syslog ................. C-43

Diagnostic Tools ........................................ C-44
Port Auto-Negotiation ................................ C-44
Ping and Link Tests .................................... C-45
  Web: Executing Ping or Link Tests ................. C-46
  CLI: Ping or Link Tests ............................ C-47
Displaying the Configuration File ...................... C-49
  CLI: Viewing the Configuration File .............. C-49
  Web: Viewing the Configuration File .............. C-49
Listing Switch Configuration and Operation Details ... C-49
CLI Administrative and Troubleshooting Commands .... C-51
Traceroute Command .................................. C-52

Restoring the Factory-Default Configuration .......... C-55
  CLI: Resetting to the Factory-Default Configuration ........ C-55
  Clear/Reset: Resetting to the Factory-Default Configuration C-55

Restoring a Flash Image ................................ C-56

D MAC Address Management

Contents .................................................. D-1
Overview .................................................. D-2

Determining MAC Addresses .......................... D-3
  Menu: Viewing the Switch’s MAC Addresses .......... D-4
  CLI: Viewing the Port and VLAN MAC Addresses ...... D-5

Viewing the MAC Addresses of Connected Devices .... D-7
E Monitoring Resources

Contents ................................................................................. E-1

Monitored Resources ................................................................. E-2
  General Resource Usage ......................................................... E-2
  Displaying the Current Resource State ................................. E-2

Resource Usage ........................................................................ E-5
  Limits on New Configuration, IDM, and Virus-Throttling
  Instances If Full Resource Use Occurs ................................. E-6

F Daylight Savings Time on ProCurve Switches

Index
About Your Switch Manual Set

The switch manual set includes the following documentation:

- **Read Me First**—a printed guide shipped with your switch. Provides software update information, product notes, and other information.

- **Installation and Getting Started Guide**—a printed guide shipped with your switch. This guide explains how to prepare for and perform the physical installation and connect the switch to your network.

- **Management and Configuration Guide**—a PDF file on the ProCurve Networking Web Site. This guide describes how to configure, manage, and monitor basic switch operation.

- **Advanced Traffic Management Guide**—a PDF file on the ProCurve Networking Web Site. This guide explains how to configure traffic management features such as VLANs, MSTP, QoS, and Meshing.

- **Multicast and Routing Guide**—a PDF file on the ProCurve Networking Web Site. This guide explains how to configure IGMP, PIM, IP routing, and VRRP features.

- **Access Security Guide**—a PDF file on the ProCurve Networking Web Site. This guide explains how to configure access security features and user authentication on the switch.

- **Release Notes**—posted on the ProCurve Networking web site to provide information on software updates. The release notes describe new features, fixes, and enhancements that become available between revisions of the main product guide.

**Note**

For the latest version of all ProCurve switch documentation, including Release Notes covering recently added features, visit the ProCurve Networking web site at **www.procurve.com**, click on **Technical support**, and then click on **Product manuals (all)**.
### Feature Index

For the manual set supporting your switch model, the following feature index indicates which manual to consult for information on a given software feature.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1Q VLAN Tagging</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.1X Port-Based Priority</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.1X Multiple Authenticated Clients per port</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACLs</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA Authentication</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authorized IP Managers</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authorized Manager List (web, telnet, TFTP)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto MDIX Configuration</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOOTP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Config File</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console Access</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy Command</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoS (Class of Service)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debug</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHCP Configuration</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHCP Option 82</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHCP/Bootp Operation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic Tools</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downloading Software</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eavesdrop Protection</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Log</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Factory Default Settings</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Control (802.3x)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File Management</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File Transfers</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friendly Port Names</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guaranteed Minimum Bandwidth (GMB)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GVRP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identity-Driven Management (IDM)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface Access (Telnet, Console/Serial, Web)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Addressing</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Routing</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumbos Support</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLDP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLDP-Med</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC Address Management</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC Lockdown</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC Lockout</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC-based Authentication</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC authentication RADIUS support</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management VLAN</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meshing</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring and Analysis</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multicast Filtering</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple Configuration Files</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Network Management Applications (SNMP)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenView Device Management</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSPF</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Passwords and Password Clear Protection</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PCM</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PIM-DM; PIM-SM</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ping</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Port Configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Monitoring</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Port Security</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Port Status</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Port Trunking (LACP)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Port-Based Access Control</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Port-Based Priority (802.1Q)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Power over Ethernet (PoE)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Protocol Filters</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Protocol VLANS</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Quality of Service (QoS)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIUS Authentication and Accounting</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIUS-Based Configuration</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Rate-limiting</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RIP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RMON 1,2,3,9</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Routing</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Routing - IP Static</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Secure Copy</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SFLOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>SFTP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNMPv3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Downloads (SCP/SFTP, TFPT, Xmodem)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source-Port Filters</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Spanning Tree (STP, RSTP, MSTP)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSHv2 (Secure Shell) Encryption</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSL (Secure Socket Layer)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack Management (3500yl and 6200yl switches only)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syslog</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>System Information</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TACACS+ Authentication</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Telnet Access</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFTP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Protocols (TimeP, SNTP)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic/Security Filters</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDP Forwarder</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus Throttling (connection-rate filtering)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VLANs</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN Mirroring (1 static VLAN)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voice VLAN</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRRP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Web Authentication RADIUS Support</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Web-based Authentication</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Web UI</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xmodem</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Getting Started

Contents

Introduction ................................................................. 1-2
Conventions ................................................................. 1-2
  Feature Descriptions by Model .................................... 1-2
  Command Syntax Statements ....................................... 1-3
  Command Prompts ....................................................... 1-3
  Screen Simulations .................................................... 1-4
  Port Identity Examples ............................................... 1-4
  Configuration and Operation Examples ......................... 1-4
  Keys ........................................................................ 1-4
Sources for More Information ........................................... 1-5
  Getting Documentation From the Web ............................. 1-7
  Online Help ................................................................ 1-7
Need Only a Quick Start? ................................................... 1-8
  IP Addressing ................................................................ 1-8
To Set Up and Install the Switch in Your Network ............... 1-9
  Physical Installation ..................................................... 1-9
  Premium Edge Switch Features ..................................... 1-9
Introduction

This *Management and Configuration Guide* is intended for use with the following switches:

- ProCurve Switch 5406zl
- ProCurve Switch 5412zl
- ProCurve Switch 3500yl-24G-PWR Intelligent Edge
- ProCurve Switch 3500yl-48G-PWR Intelligent Edge
- ProCurve Switch 6200yl-24G mGBIC Premium Edge

This guide describes how to use the command line interface (CLI), Menu interface, and web browser to configure, manage, monitor, and troubleshoot switch operation.

For an overview of other product documentation for the above switches, refer to “Product Documentation” on page xix.

You can download documentation from the ProCurve Networking web site, [www.procurve.com](http://www.procurve.com).

Conventions

This guide uses the following conventions for command syntax and displayed information.

Feature Descriptions by Model

In cases where a software feature is not available in all of the switch models covered by this guide, the section heading specifically indicates which product or product series offer the feature.

For example, (the switch is highlighted here in **bold italics**):

“QoS Pass-Through Mode on the *Series 5400zl Switches*”. 
Command Syntax Statements

Syntax: ip < default-gateway < ip-addr >> | routing >

Syntax: show interfaces [port-list]

- Vertical bars ( | ) separate alternative, mutually exclusive elements.
- Square brackets ( [ ] ) indicate optional elements.
- Braces ( { } ) enclose required elements.
- Braces within square brackets ( [ <> ] ) indicate a required element within an optional choice.
- Boldface indicates use of a CLI command, part of a CLI command syntax, or other displayed element in general text. For example:
  “Use the copy tftp command to download the key from a TFTP server.”
- Italics indicate variables for which you must supply a value when executing the command. For example, in this command syntax, you must provide one or more port numbers:
  Syntax: aaa port-access authenticator < port-list >

Command Prompts

In the default configuration, your switch displays a CLI prompt similar to the following:

ProCurve 5406zl#
ProCurve 5412zl#
ProCurve 3500yl#
ProCurve 6200yl#

To simplify recognition, this guide uses ProCurve to represent command prompts for all models. For example:

ProCurve#

(You can use the hostname command to change the text in the CLI prompt.)
Screen Simulations

Displayed Text. Figures containing simulated screen text and command output look like this:

```
ProCurve> show version
Image stamp: /sw/code/build/info
         March 1, 2006 13:43:13
         K.11.01
         139
ProCurve>
```

Figure 1-1. Example of a Figure Showing a Simulated Screen

In some cases, brief command-output sequences appear without figure identification. For example:

```
ProCurve(config)# clear public-key
ProCurve(config)# show ip client-public-key
show_client_public_key: cannot stat keyfile
```

Port Identity Examples

This guide describes software applicable to both chassis-based and stackable ProCurve switches. Where port identities are needed in an example, this guide uses the chassis-based port identity system, such as “A1, “B3-B5”, “C7”, etc. However, unless otherwise noted, such examples apply equally to the stackable switches, which typically use only numbers, such as “1”, “3-5”, “15”, etc. for port identities.

Configuration and Operation Examples

Unless otherwise noted, examples using a particular switch model apply to all switch models covered by this guide.

Keys

Simulations of actual keys use a bold, sans-serif typeface with square brackets. For example, the Tab key appears as [Tab] and the “Y” key appears as [Y].
Sources for More Information

For additional information about switch operation and features not covered in this guide, consult the following sources:

- Feature Index—For information on which product manual to consult for a given software feature, refer to the “Feature Index” on page xx.

Note

For the latest version of all ProCurve switch documentation, including Release Notes covering recently added features, visit the ProCurve Networking web site at www.procurve.com, click on Technical support, and then click on Product Manuals (all).

- Software Release Notes—Release notes are posted on the ProCurve Networking web site and provide information on new software updates:
  - information on the ProCurve Premium Edge License (This option is used on the 3500yl and 5400zl switches to enable certain software features described in the manual set for these switches. The 6200yl switch is available only as a Premium Edge switch.)
  - new features and how to configure and use them
  - software management, including downloading software to the switch
  - software fixes addressed in current and previous releases

To view and download a copy of the latest software release notes for your switch, refer to “Getting Documentation From the Web” on page 1-7.

- Product Notes and Software Update Information—The printed Read Me First shipped with your switch provides software update information, product notes, and other information. For the latest version, refer to “Getting Documentation From the Web” on page 1-7.

- Installation and Getting Started Guide—Use the Installation and Getting Started Guide shipped with your switch to prepare for and perform the physical installation. This guide also steps you through connecting the switch to your network and assigning IP addressing, as well as describing the LED indications for correct operation and trouble analysis. You can download a copy from the ProCurve Networking web site. (See “Getting Documentation From the Web” on page 1-7.)
Management and Configuration Guide—Use this guide for information on topics such as:
- various interfaces available on the switch
- memory and configuration operation
- interface access
- IP addressing
- time protocols
- port configuration, trunking, traffic control, and PoE operation
- SNMP, LLDP, and other network management topics
- file transfers, switch monitoring, troubleshooting, and MAC address management

Advanced Traffic Management Guide—Use this guide for information on topics such as:
- VLANs: Static port-based and protocol VLANs, and dynamic GVRP VLANs
- spanning-Tree: 802.1D (STP), 802.1w (RSTP), and 802.1s (MSTP)
- meshing
- Quality-of-Service (QoS)
- Access Control Lists (ACLs)

Multicast and Routing Guide—Use this guide for information topics such as:
- IGMP
- PIM (SM and DM)
- IP routing
- VRRP

Access Security Guide—Use this guide for information on topics such as:
- Local username and password security
- Web-Based and MAC-based authentication
- RADIUS and TACACS+ authentication
- SSH (Secure Shell) and SSL (Secure Socket Layer) operation
- 802.1X access control
- Port security operation with MAC-based control
- Authorized IP Manager security
- Key Management System (KMS)
Getting Documentation From the Web

1. Go to the ProCurve Networking web site at www.procurve.com
2. Click on Technical support.
3. Click on Product manuals.
4. Click on the product for which you want to view or download a manual.

Online Help

If you need information on specific parameters in the menu interface, refer to the online help provided in the interface. For example:

![Console - Manager Mode menu interface](image)

If you need information on a specific command in the CLI, type the command name followed by “help”. For example:
Need Only a Quick Start?

IP Addressing

If you just want to give the switch an IP address so that it can communicate on your network, or if you are not using VLANs, ProCurve recommends that you use the Switch Setup screen to quickly configure IP addressing. To do so, do one of the following:

- Enter `setup` at the CLI Manager level prompt.
  
  ProCurve# setup

- In the Main Menu of the Menu interface, select
  
  8. Run Setup

For more on using the Switch Setup screen, see the *Installation and Getting Started Guide* you received with the switch.
To Set Up and Install the Switch in Your Network

Physical Installation

Use the ProCurve Installation and Getting Started Guide (shipped with the switch) for the following:

- Notes, cautions, and warnings related to installing and using the switch and its related modules
- Instructions for physically installing the switch in your network
- Quickly assigning an IP address and subnet mask, set a Manager password, and (optionally) configure other basic features.
- Interpreting LED behavior.

For the latest version of the Installation and Getting Started Guide for your switch, refer to “Getting Documentation From the Web” on page 1-7.

Premium Edge Switch Features

The ProCurve 3500yl and 5400zl switches ship with the ProCurve Intelligent Edge software feature set. Additional Premium Edge switch software features for these switches can be acquired by purchasing a Premium Edge license and installing it on the Intelligent Edge version of these switches. Part numbers for the Premium Edge licenses are:

- 3500yl switches: J8993A
- 5400zl switches: J8994A

(Note that the ProCurve 6200yl switch is available only as a Premium Edge switch.)

For the most current information about the features included in the Premium Edge package, refer to the release notes for your product on the ProCurve Networking web site. The Premium Edge License is available from your ProCurve reseller.
Selecting a Management Interface

Contents

Overview ................................................................. 2-2
Understanding Management Interfaces ...................... 2-2
Advantages of Using the Menu Interface .................... 2-3
Advantages of Using the CLI ................................. 2-4
  General Benefits ................................................. 2-4
  Information on Using the CLI ............................... 2-4
Advantages of Using the Web Browser Interface ........... 2-5
Advantages of Using ProCurve Manager or ProCurve Manager Plus .................... 2-7
  Custom Login Banners for the Console and Web Browser Interfaces .................. 2-10
    Banner Operation with Telnet, Serial, or SSHv2 Access ................ 2-11
    Banner Operation with Web Browser Access .................. 2-11
    Configuring and Displaying a Non-Default Banner .................. 2-11
    Example of Configuring and Displaying a Banner ................ 2-12
    Operating Notes .............................................. 2-15

Operating Notes ..................................................... 2-15
Overview

This chapter describes the following:

- Management interfaces for the switches covered in this guide
- Advantages of using each interface

Understanding Management Interfaces

Management interfaces enable you to reconfigure the switch and to monitor switch status and performance. The switch offers the following interfaces:

- **Menu interface**—a menu-driven interface offering a subset of switch commands through the built-in VT-100/ANSI console—2-3
- **CLI**—a command line interface offering the full set of switch commands through the VT-100/ANSI console built into the switch—2-4
- **Web browser interface**—a switch interface offering status information and a subset of switch commands through a standard web browser (such as Netscape Navigator or Microsoft Internet Explorer)—2-5
- **ProCurve Manager (PCM)**—a windows-based network management solution included in-box with all manageable ProCurve devices. Features include automatic device discovery, network status summary, topology and mapping, and device management.
- **ProCurve Manager Plus (PCM+)**—a complete windows-based network management solution that provides both the basic features offered with PCM, as well as more advanced management features, including in-depth traffic analysis, group and policy management, configuration management, device software updates, and advanced VLAN management. (ProCurve includes a copy of PCM+ in-box for a free 30-day trial.)

This manual describes how to use the menu interface (chapter 3), the CLI (chapter 4), the web browser interface (chapter 5), and how to use these interfaces to configure and monitor the switch.

For information on how to access the web browser interface Help, see “Online Help for the Web Browser Interface” on page 5-11.
Selecting a Management Interface
Advantages of Using the Menu Interface

To use ProCurve Manager or ProCurve Manager Plus, refer to the *Getting Started Guide* and the *Administrator’s Guide*, which are available electronically with the software for these applications. For more information, visit the ProCurve Networking web site at [www.procurve.com](http://www.procurve.com).

---

**Advantages of Using the Menu Interface**

---

**--- CONSOLE - MANAGER MODE ---**

<table>
<thead>
<tr>
<th>Main Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Status and Counters…</td>
</tr>
<tr>
<td>2. Switch Configuration.</td>
</tr>
<tr>
<td>3. Console Passwords…</td>
</tr>
<tr>
<td>4. Event Log</td>
</tr>
<tr>
<td>5. Command Line (CLI)</td>
</tr>
<tr>
<td>6. Reboot Switch</td>
</tr>
<tr>
<td>7. Download OS</td>
</tr>
<tr>
<td>8. Run Setup</td>
</tr>
<tr>
<td>9. Stacking…</td>
</tr>
<tr>
<td>0. Logout</td>
</tr>
</tbody>
</table>

---

**Figure 2-1. Example of the Console Interface Display**

- **Provides quick, easy management access** to a menu-driven subset of switch configuration and performance features:

  - IP addressing
  - VLANs and GVRP
  - Port Security
  - Port and Static Trunk Group
  - Spanning Tree
  - System information
  - Local passwords
  - SNMP communities
  - Time protocols

The menu interface also provides access for:

- Setup screen
- Event Log display
- Switch and port status displays
- Switch and port statistic and counter displays
- Reboots
- Software downloads

- **Offers out-of-band access** (through the RS-232 connection) to the switch, so network bottlenecks, crashes, lack of configured or correct IP address, and network downtime do not slow or prevent access.
Advantages of Using the CLI

- Enables Telnet (in-band) access to the menu functionality.
- Allows faster navigation, avoiding delays that occur with slower display of graphical objects over a web browser interface.
- Provides more security; configuration information and passwords are not seen on the network.

Figure 2-2. Command Prompt Examples

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProCurve&gt;</td>
<td>Prompt for Operator Level</td>
</tr>
<tr>
<td>ProCurve#</td>
<td>Prompt for Manager Level</td>
</tr>
<tr>
<td>ProCurve(config)#</td>
<td>Prompt for Global Configuration Level</td>
</tr>
<tr>
<td>ProCurve(&lt;context&gt;)#</td>
<td>Prompt for Context Configuration Levels</td>
</tr>
<tr>
<td>For example:</td>
<td></td>
</tr>
<tr>
<td>ProCurve(eth-1-5)#</td>
<td></td>
</tr>
<tr>
<td>ProCurve(vlan-1)#</td>
<td></td>
</tr>
<tr>
<td>ProCurve(pim)#</td>
<td></td>
</tr>
<tr>
<td>ProCurve(rip)#</td>
<td></td>
</tr>
</tbody>
</table>

General Benefits

- Provides access to the complete set of the switch configuration, performance, and diagnostic features.
- Offers out-of-band access (through the RS-232 connection) or Telnet (in-band) access.
- Enables quick, detailed system configuration and management access to system operators and administrators experienced in command prompt interfaces.
- Provides help at each level for determining available options and variables.

Information on Using the CLI

- For information on how to use the CLI, refer to chapter 4. “Using the Command Line Interface (CLI)”.
Selecting a Management Interface
Advantages of Using the Web Browser Interface

- To perform specific procedures (such as configuring IP addressing or VLANs), use the Contents listing at the front of the manual to locate the information you need.
- For monitoring and analyzing switch operation, refer to appendix B.
- For information on individual CLI commands, refer to the Index or to the online Help provided in the CLI interface.

Advantages of Using the Web Browser Interface

- **Easy access** to the switch from anywhere on the network
- **Familiar browser interface**—locations of window objects consistent with commonly used browsers, uses mouse clicking for navigation, no terminal setup

Figure 2-3. Example of the Web Browser Interface
Selecting a Management Interface
Advantages of Using the Web Browser Interface

- **Many features have all their fields in one screen** so you can view all values at once
- **More visual cues**, using colors, status bars, device icons, and other graphical objects instead of relying solely on alphanumeric values
- **Display of acceptable ranges of values available** in configuration list boxes
Advantages of Using ProCurve Manager or ProCurve Manager Plus

You can operate ProCurve Manager and ProCurve Manager Plus (PCM and PCM+) from a PC on the network to monitor traffic, manage your hubs and switches, and proactively recommend network changes to increase network uptime and optimize performance. Easy to install and use, PCM and PCM+ are the answers to your management challenges.

Figure 2-4. Example of the Home Page for ProCurve Manager Plus
PCM and PCM+ enable greater control, uptime, and performance in your network:

- **Features and benefits of ProCurve Manager:**
  - **Network Status Summary:** Upon boot-up, a network status screen displays high-level information on network devices, end nodes, events, and traffic levels. From here, users can research any one of these areas to get more details.
  - **Alerts and Troubleshooting:** An events summary screen displays alerts to the user and categorizes them by severity, making it easier to track where bottlenecks and issues exist in the network. Alerts present detailed information on the problem, even down to the specific port.
  - **Automatic Device Discovery:** This feature is customized for fast discovery of all ProCurve manageable network devices. The user can define which IP subnets to discover.
  - **Topology and Mapping:** This feature automatically creates a map of discovered network devices. Maps are color-coded to reflect device status and can be viewed at multiple levels (physical view, subnet view, or VLAN view).
  - **Device Management:** Many device-focused tasks can be performed directly by the software, or the user can access web-browser and command-line interfaces with the click of a button to manage individual devices from inside the tool.

- **Features and benefits of ProCurve Manager Plus:**
  - **All of the Features of ProCurve Manager:** Refer to the above listing.
  - **In-Depth Traffic Analysis:** An integrated, low-overhead traffic monitor interface shows detailed information on traffic throughout the network. Using enhanced traffic analysis protocols such as Extended RMON and sFlow, users can monitor overall traffic levels, segments with the highest traffic, or even the top users within a network segment.
  - **Group and Policy Management:** Changes in configuration are tracked and logged, and archived configurations can be applied to one or many devices. Configurations can be compared over time or between two devices, with the differences highlighted for users.
  - **Advanced VLAN Management:** A new, easy-to-use VLAN management interface allows users to create and assign VLANs across the entire network, without having to access each network device individually.
Selecting a Management Interface
Advantages of Using ProCurve Manager or ProCurve Manager Plus

- **Device Software Updates**: This feature automatically obtains new device software images from ProCurve and updates devices, allowing users to download the latest version or choose the desired version. Updates can be scheduled easily across large groups of devices, all at user-specified times.

- **Investment Protection**: The modular software architecture of ProCurve Manager Plus will allow ProCurve to offer network administrators add-on software solutions that complement their needs.
Custom Login Banners for the Console and Web Browser Interfaces

You can now configure the switch to display a login banner of up to 320 characters when an operator initiates a management session with the switch through any of the following methods:

- Telnet
- serial connection
- SSHv2
- Web browser

In the factory default configuration, the switch displays the following default banner:

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b) (3) (ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY, 3000 Hanover St., Palo Alto, CA 94303

We'd like to keep you up to date about:
* Software feature updates
* New product announcements
* Special events
Please register your products now at: www.ProCurve.com

Password: [Redacted]

Figure 2-5. The Default Login Banner

Note

The switch’s Web browser interface does not display the default banner.
Banner Operation with Telnet, Serial, or SSHv2 Access

When a system operator begins a login session, the switch displays the banner above the local password prompt or, if no password is configured, above the **Press any key to continue prompt.** Entering a correct password or, if no password is configured, pressing any key clears the banner from the CLI and displays the CLI prompt. (Refer to figure 2-5 on page 2-10.)

Banner Operation with Web Browser Access

When a system operator uses a Web browser to access the switch, the text of a non-default banner configured on the switch appears in a dedicated banner window with a link to the Web agent home page. Clicking on **To Home Page** clears the banner window and prompts the user for a password (if configured). Following entry of the correct username/password information (or if no username/password is required), the switch then displays either the Registration page or the switch's home page. Note that if the banner feature is disabled or if the switch is using the factory-default banner shown in figure 2-5, then the banner page does not appear in the Web browser when an operator initiates a login session with the switch.

Configuring and Displaying a Non-Default Banner

You can enable or disable banner operation using either the switch’s CLI or an SNMP application. The steps include:

1. Enable non-default banner operation and define the endpoint delimiter for the banner.
2. Enter the desired banner text, including any specific line breaks you want.
3. Enter the endpoint delimiter.

Use *show banner motd* to display the current banner status.

**Syntax:**   

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>banner motd &lt; delimiter&gt;</code></td>
<td>Enables banner text input. Any character except a blank space can be used as a delimiter.</td>
</tr>
<tr>
<td><code>no banner motd</code></td>
<td>Disables the login banner feature.</td>
</tr>
</tbody>
</table>

*This command defines the single character used to terminate the banner text and enables banner text input. You can use any character except a blank space as a delimiter. The no form of the command disables the login banner feature.*
Selecting a Management Interface
Advantages of Using ProCurve Manager or ProCurve Manager Plus

Example of Configuring and Displaying a Banner

Suppose a system operator wanted to configure the following banner message on her company's switches:

This is a private system maintained by the Allied Widget Corporation.

Unauthorized use of this system can result in civil and criminal penalties!

In this case, the operator will use the [Enter] key to create line breaks, blank spaces for line centering, and the % symbol to terminate the banner message.

```
ProCurve(config)# banner motd %
Enter TEXT message. End with the character '%'.
    This is a private system maintained by the Allied Widget Corporation.
    Unauthorized use of this system can result in civil and criminal penalties!%
ProCurve(config)# write memory
```

**Figure 1. Example of Configuring a Login Banner**

To view the current banner configuration, use either the `show banner motd` or `show running` command.
Selecting a Management Interface
Advantages of Using ProCurve Manager or ProCurve Manager Plus

ProCurve(config)# show banner motd
Banner Information
Banner status: Enabled
Configured Banner:

This is a private system maintained by the
Allied Widget Corporation.
Unauthorized use of this system can result in
civil and criminal penalties!

Figure 2. Example of show banner motd Output

ProCurve(config)# show running
Running configuration:

; J8697A Configuration Editor; Created on release #K.11.00
hostname "ProCurve"
module 1 type J8702A
module 2 type J8702A
snmp-server community "notpublic" Unrestricted vlan 1
  name "DEFAULT_VLAN"
  untagged A1-A24,B1-B24
  ip address dhcp-bootp
  _exit

[banner motd "This is a private system maintained by the"
  Allied Widget Corporation.
  Unauthorized use of this system can result in
civil and criminal penalties!" _ _ _ _ _ _ ]
passwordmanager
password operator

Figure 3. The Current Banner Appears in the Switch's Running-Config File
The next time someone logs onto the switch’s management CLI, the following appears:

Copyright (C) 1991-2005 Hewlett-Packard Co. All Rights Reserved.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b) (3) (ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY, 3000 Hanover St., Palo Alto, CA 94303

This is a private system maintained by the
| Allied Widget Corporation. |
| Unauthorized use of this system can result in |
| civil and criminal penalties! |

Password: 

Figure 4. Example of CLI Result of the Login Banner Configuration
If someone uses a Web browser to log in to the switch interface, the following message appears:

![Figure 5. Example of Web Browser Interface Result of the Login Banner Configuration](image)

**Operating Notes**

- The default banner appears only when the switch is in the factory default configuration. Using `no banner motd` deletes the currently configured banner text and blocks display of the default banner. The default banner is restored only if the switch is reset to its factory-default configuration.

- The switch supports one banner at any time. Configuring a new banner replaces any former banner configured on the switch.

- If the switch is configured with `ssh version 1` or `ssh version 1-or-2`, configuring the banner sets the SSH configuration to `ssh version 2` and displays the following message in the CLI:

  `Warning: SSH version has been set to v2.`

- If a banner is configured, the switch does not allow configuration with `ssh version 1` or `ssh version 1-or-2`. Attempting to do so produces the following error message in the CLI:

  `Banner has to be disabled first.`

- If a banner is enabled on the switch, the Web browser interface displays the following link to the banner page:

  `Notice to all users`
Using the Menu Interface

Contents

Overview ................................................................. 3-2
Starting and Ending a Menu Session ................................. 3-3
   How To Start a Menu Interface Session ......................... 3-4
   How To End a Menu Session and Exit from the Console: .... 3-5
Main Menu Features .................................................. 3-7
Screen Structure and Navigation ................................... 3-9
Rebooting the Switch .................................................. 3-12
Menu Features List ..................................................... 3-14
Where To Go From Here ............................................... 3-15
Overview

This chapter describes the following features:

- Overview of the Menu Interface (page 3-2)
- Starting and ending a Menu session (page 3-3)
- The Main Menu (page 3-7)
- Screen structure and navigation (page 3-9)
- Rebooting the switch (page 3-12)

The menu interface operates through the switch console to provide you with a subset of switch commands in an easy-to-use menu format enabling you to:

- Perform a “quick configuration” of basic parameters, such as the IP addressing needed to provide management access through your network
- Configure these features:
  - Manager and Operator passwords
  - System parameters
  - IP addressing
  - Time protocol
  - Ports
  - Trunk groups
  - A network monitoring port
  - Spanning Tree operation
  - SNMP community names
  - IP authorized managers
  - VLANs (Virtual LANs) and GVRP

- View status, counters, and Event Log information
- Update switch software
- Reboot the switch

For a detailed list of menu features, see the “Menu Features List” on page 3-14.

Privilege Levels and Password Security. ProCurve strongly recommends that you configure a Manager password to help prevent unauthorized access to your network. A Manager password grants full read-write access to the switch. An Operator password, if configured, grants access to status and counter, Event Log, and the Operator level in the CLI. After you configure passwords on the switch and log off of the interface, access to the menu interface (and the CLI and web browser interface) will require entry of either the Manager or Operator password. (If the switch has only a Manager password, then someone without a password can still gain read-only access.)
If the switch has neither a Manager nor an Operator password, anyone having access to the console interface can operate the console with full manager privileges. Also, if you configure only an Operator password, entering the Operator password enables full manager privileges.

For more information on passwords, refer to the Access Security Guide for your switch.

Menu Interaction with Other Interfaces.

- The menu interface displays the current running-config parameter settings. You can use the menu interface to save configuration changes made in the CLI only if the CLI changes are in the running config when you save changes made in the menu interface. (For more on how switch memory manages configuration changes, see Chapter 6, “Switch Memory and Configuration”.)
- A configuration change made through any switch interface overwrites earlier changes made through any other interface.
- The Menu Interface and the CLI (Command Line Interface) both use the switch console. To enter the menu from the CLI, use the menu command. To enter the CLI from the Menu interface, select Command Line (CLI) option.

Starting and Ending a Menu Session

You can access the menu interface using any of the following:

- A direct serial connection to the switch’s console port, as described in the installation guide you received with the switch
- A Telnet connection to the switch console from a networked PC or the switch’s web browser interface. Telnet requires that an IP address and subnet mask compatible with your network have already been configured on the switch.

This section assumes that either a terminal device is already configured and connected to the switch (see the Installation and Getting Started Guide shipped with your switch) or that you have already configured an IP address on the switch (required for Telnet access).
How To Start a Menu Interface Session

In its factory default configuration, the switch console starts with the CLI prompt. To use the menu interface with Manager privileges, go to the Manager level prompt and enter the `menu` command.

1. Use one of these methods to connect to the switch:
   - A PC terminal emulator or terminal
   - Telnet

2. Do one of the following:
   - If you are using Telnet, go to step 3.
   - If you are using a PC terminal emulator or a terminal, press `[Enter]` one or more times until a prompt appears.

3. When the switch screen appears, do one of the following:
   - If a password has been configured, the password prompt appears.
     
     Password: __

     Type the Manager password and press `[Enter]`. Entering the Manager password gives you manager-level access to the switch. (Entering the Operator password gives you operator-level access to the switch. Refer to the Access Security Guide for your switch.)
   - If no password has been configured, the CLI prompt appears. Go to the next step.

4. When the CLI prompt appears, display the Menu interface by entering the `menu` command. For example:

   ProCurve# menu [Enter]

results in the following display:
Using the Menu Interface
Starting and Ending a Menu Session

---

### Main Menu

1. **Status and Counters**
2. **Switch Configuration**
3. **Console Passwords**
4. **Event Log**
5. **Command Line (CLI)**
6. **Reboot Switch**
7. **Download OS**
8. **Run Setup**
9. **Stacking**
0. **Logout**

**Figure 3-1. Example of the Main Menu with Manager Privileges**

For a description of Main Menu features, see “Main Menu Features” on page 3-7.

**Note**

To configure the switch to start with the menu interface instead of the CLI, go to the Manager level prompt in the CLI, enter the `setup` command, and in the resulting display, change the Logon Default parameter to **Menu**. For more information, see the *Installation and Getting Started Guide* you received with the switch.

**How To End a Menu Session and Exit from the Console**:

The method for ending a menu session and exiting from the console depends on whether, during the session, you made any changes to the switch configuration that require a switch reboot to activate. (Most changes via the menu interface need only a **Save**, and do not require a switch reboot.) Configuration changes needing a reboot are marked with an asterisk (*) next to the configured item in the menu and also next to the **Switch Configuration** item in the Main Menu.
Starting and Ending a Menu Session

Figure 3-2. Example Indication of a Configuration Change Requiring a Reboot

1. In the current session, if you have not made configuration changes that require a switch reboot to activate, return to the Main Menu and press [0] (zero) to log out. Then just exit from the terminal program, turn off the terminal, or quit the Telnet session.

2. If you have made configuration changes that require a switch reboot—that is, if an asterisk (*) appears next to a configured item or next to Switch Configuration in the Main Menu:
   a. Return to the Main Menu.

Rebooting the switch terminates the menu session, and, if you are using Telnet, disconnects the Telnet session.

(See “Rebooting To Activate Configuration Changes” on page 3-13.)

3. Exit from the terminal program, turn off the terminal, or close the Telnet application program.

Stacking is supported on the 3500yl and 6200yl switches.
Main Menu Features

The Main Menu gives you access to these Menu interface features:

■ **Status and Counters:** Provides access to display screens showing switch information, port status and counters, port and VLAN address tables, and spanning tree information. (Refer to Appendix B, “Monitoring and Analyzing Switch Operation”.)

■ **Switch Configuration:** Provides access to configuration screens for displaying and changing the current configuration settings. (See the Contents listing at the front of this manual.) For a listing of features and parameters configurable through the menu interface, see the “Menu Features List” on page 3-14. For an index of the features covered in the software manuals for your switch, refer to “Feature Index” on page -xx.

■ **Console Passwords:** Provides access to the screen used to set or change Manager-level and Operator-level passwords, and to delete Manager and Operator password protection. (Refer to the chapter on configuring usernames and passwords in the *Access Security Guide* for your switch.)

■ **Event Log:** Enables you to read progress and error messages that are useful for checking and troubleshooting switch operation. (See “Using the Event Log To Identify Problem Sources” on page C-26.)
■ **Command Line (CLI):** Selects the Command Line Interface at the same level (Manager or Operator) that you are accessing in the Menu interface. (Refer to chapter 4, “Using the Command Line Interface (CLI”).)

■ **Reboot Switch:** Performs a “warm” reboot of the switch, which clears most temporary error conditions, resets the network activity counters to zero, and resets the system up-time to zero. A reboot is required to activate a change in the VLAN Support parameter. (See “Rebooting from the Menu Interface” on page 6-11.)

■ **Download OS:** Enables you to download a new switch software version to the switch. (See Appendix A, “File Transfers”.

■ **Run Setup:** Displays the Switch Setup screen for quickly configuring basic switch parameters such as IP addressing, default gateway, logon default interface, spanning tree, and others. (Refer to the *Installation and Getting Started Guide* for your switch.)

■ **Logout:** Closes the Menu interface and console session, and disconnects Telnet access to the switch. (See “How to End a Menu Session and Exit from the Console” on page 3-5.)
Screen Structure and Navigation

Menu interface screens include these three elements:

- Parameter fields and/or read-only information such as statistics
- Navigation and configuration actions, such as Save, Edit, and Cancel
- Help line to describe navigation options, individual parameters, and read-only data

For example, in the following System Information screen:

```
System Name : ProCurve
System Contact :
System Location :

Inactivity Timeout (min) [0] : 0  MAC Age Time (sec) [300] : 300
Time Sync Method [None] : TIME
TimeP Mode [Disabled] : Disabled

Time Zone [0] : 0
Daylight Time Rule [None] : None

Actions-> Cancel  Edit  Save  Help
```

Figure 3-4. Elements of the Screen Structure

**“Forms” Design.** The configuration screens, in particular, operate similarly to a number of PC applications that use forms for data entry. When you first enter these screens, you see the current configuration for the item you have selected. To change the configuration, the basic operation is to:

1. Press [E] to select the Edit action.
2. Navigate through the screen making all the necessary configuration changes. (See Table 4-1 on the next page.)
3. Press [Enter] to return to the Actions line. From there you can save the configuration changes or cancel the changes. Cancel returns the configuration to the values you saw when you first entered the screen.
Using the Menu Interface  
Screen Structure and Navigation

Table 3-1. How To Navigate in the Menu Interface

<table>
<thead>
<tr>
<th>Task: Execute an action from the “Actions -&gt;” list at the bottom of the screen:</th>
<th>Actions:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Use either of the following methods:</td>
<td></td>
</tr>
<tr>
<td>- Use the arrow keys (←, or →) to highlight the action you want to execute, then press [Enter].</td>
<td></td>
</tr>
<tr>
<td>- Press the key corresponding to the capital letter in the action name. For example, in a configuration menu, press [E] to select Edit and begin editing parameter values.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task: Reconfigure (edit) a parameter setting or a field:</th>
<th>Actions:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Select a configuration item, such as System Name. (See figure 3-4.)</td>
<td></td>
</tr>
<tr>
<td>3. Use [Tab] or the arrow keys (←, →, ↑, or ↓) to highlight the item or field.</td>
<td></td>
</tr>
<tr>
<td>4. Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>- If the parameter has preconfigured values, either use the Space bar to select a new option or type the first part of your selection and the rest of the selection appears automatically. (The help line instructs you to “Select” a value.)</td>
<td></td>
</tr>
<tr>
<td>- If there are no preconfigured values, type in a value (the Help line instructs you to “Enter” a value).</td>
<td></td>
</tr>
<tr>
<td>5. If you want to change another parameter value, return to step 3.</td>
<td></td>
</tr>
<tr>
<td>6. If you are finished editing parameters in the displayed screen, press [Enter] to return to the Actions line and do one of the following:</td>
<td></td>
</tr>
<tr>
<td>- To save and activate configuration changes, press [S] (for the Save action). This saves the changes in the startup configuration and also implements the change in the currently running configuration. (See Chapter 6, “Switch Memory and Configuration”.).</td>
<td></td>
</tr>
<tr>
<td>- To exit from the screen without saving any changes that you have made (or if you have not made changes), press [C] (for the Cancel action).</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** In the menu interface, executing Save activates most parameter changes and saves them in the startup configuration (or flash) memory, and it is therefore not necessary to reboot the switch after making these changes. But if an asterisk appears next to any menu item you reconfigure, the switch will not activate or save the change for that item until you reboot the switch. In this case, rebooting should be done after you have made all desired changes and then returned to the Main Menu.

<table>
<thead>
<tr>
<th>Task: Exit from a read-only screen.</th>
<th>Actions:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Press [B] (for the Back action).</td>
</tr>
</tbody>
</table>
To get Help on individual parameter descriptions. In most screens there is a Help option in the Actions line. Whenever any of the items in the Actions line is highlighted, press [H], and a separate help screen is displayed. For example:

![Help Screen Example](image)

To get Help on the actions or data fields in each screen: Use the arrow keys (",",">",",", or ") to select an action or data field. The help line under the Actions items describes the currently selected action or data field.

For guidance on how to navigate in a screen: See the instructions provided at the bottom of the screen, or refer to “Screen Structure and Navigation” on page 3-9.)
Rebooting the Switch

Rebooting the switch from the menu interface

■ Terminates all current sessions and performs a reset of the operating system
■ Activates any menu interface configuration changes that require a reboot
■ Resets statistical counters to zero

(Note that statistical counters can be reset to zero without rebooting the switch.)

To Reboot the switch, use the Reboot Switch option in the Main Menu. (Note that Reboot Switch is not available if you log on in Operator mode; that is, if you enter an Operator password instead of a manager password at the password prompt.)

Figure 3-6. The Reboot Switch Option in the Main Menu
Rebooting To Activate Configuration Changes. Configuration changes for most parameters in the menu interface become effective as soon as you save them. However, you must reboot the switch in order to implement a change in the Maximum VLANs to support parameter. (To access this parameter, go to the Main Menu and select:

2. Switch Configuration

8. VLAN Menu

1. VLAN Support.

If you make configuration changes in the menu interface that require a reboot, the switch displays an asterisk (*) next to the menu item in which the change has been made. For example, if you change and save the value for the Maximum VLANs to support parameter, an asterisk appears next to the VLAN Support entry in the VLAN Menu screen, and also next to the Switch Configuration entry in the Main Menu, as shown in figure 4-6:

![Figure 3-7. Indication of a Configuration Change Requiring a Reboot](image)

To activate changes indicated by the asterisk, go to the Main Menu and select the Reboot Switch option.

**Note**

Executing the write memory command in the CLI does not affect pending configuration changes indicated by an asterisk in the menu interface. That is, only a reboot from the menu interface or a boot or reload command from the CLI will activate a pending configuration change indicated by an asterisk.
Menu Features List

Status and Counters
- General System Information
- Switch Management Address Information
- Port Status
- Port Counters
- Address Table
- Port Address Table
- Spanning Tree Information

Switch Configuration
- System Information
- Port/Trunk Settings
- Network Monitoring Port
- Spanning Tree Operation
- IP Configuration
- SNMP Community Names
- IP authorized Managers
- VLAN Menu

Console Passwords

Event Log

Command Line (CLI)

Reboot Switch

Download OS (Download Switch Software)

Run Setup

Logout
Where To Go From Here

This chapter provides an overview of the menu interface and how to use it. The following table indicates where to turn for detailed information on how to use the individual features available through the menu interface.

<table>
<thead>
<tr>
<th>Option:</th>
<th>Turn to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>To use the Run Setup option</td>
<td>Refer to the <em>Installation and Getting Started Guide</em> shipped with the switch.</td>
</tr>
<tr>
<td>To view and monitor switch status and counters</td>
<td>Appendix B, “Monitoring and Analyzing Switch Operation”</td>
</tr>
<tr>
<td>To learn how to configure and use passwords and other security features</td>
<td>Refer to the <em>Access Security Guide</em> for your switch.</td>
</tr>
<tr>
<td>To learn how to use the Event Log</td>
<td>“Using the Event Log To Identify Problem Sources” on page C-26</td>
</tr>
<tr>
<td>To learn how the CLI operates</td>
<td>Chapter 4, “Using the Command Line Interface (CLI)”</td>
</tr>
<tr>
<td>To download switch software</td>
<td>Appendix A, “File Transfers”</td>
</tr>
<tr>
<td>For a description of how switch memory handles configuration changes</td>
<td>Chapter 6, “Switch Memory and Configuration”</td>
</tr>
<tr>
<td>For information on other switch features and how to configure them</td>
<td>Refer to the Feature Index on (page xx) at the front of this guide, and to “Sources for More Information” on page 1-5.</td>
</tr>
</tbody>
</table>
— This page is intentionally unused. —
Using the Command Line Interface (CLI)

Contents

Overview ................................................................. 4-2
Accessing the CLI .................................................... 4-2
Using the CLI ........................................................... 4-2
   Privilege Levels at Logon ......................................... 4-3
   Privilege Level Operation ......................................... 4-4
   Operator Privileges ............................................... 4-4
   Manager Privileges ............................................... 4-5
   How To Move Between Levels ..................................... 4-7
Listing Commands and Command Options .......................... 4-8
   Listing Commands Available at Any Privilege Level .......... 4-8
   Listing Command Options ......................................... 4-10
Displaying CLI “Help” .................................................. 4-11
Configuration Commands and the Context Configuration Modes .. 4-13

CLI Control and Editing .................................................. 4-16
Overview

The CLI is a text-based command interface for configuring and monitoring the switch. The CLI gives you access to the switch's full set of commands while providing the same password protection that is used in the web browser interface and the menu interface.

Accessing the CLI

Like the menu interface, the CLI is accessed through the switch console, and in the switch's factory default state, is the default interface when you start a console session. You can access the console out-of-band by directly connecting a terminal device to the switch, or in-band by using Telnet either from a terminal device or through the web browser interface.

Also, if you are using the menu interface, you can access the CLI by selecting the Command Line (CLI) option in the Main Menu.

Using the CLI

The CLI offers these privilege levels to help protect the switch from unauthorized access:

1. Operator
2. Manager
3. Global Configuration
4. Context Configuration

Note

CLI commands are not case-sensitive.
When you use the CLI to make a configuration change, the switch writes the change to the Running-Config file in volatile memory. This allows you to test your configuration changes before making them permanent. To make changes permanent, you must use the `write memory` command to save them to the Startup-Config file in non-volatile memory. If you reboot the switch without first using `write memory`, all changes made since the last reboot or `write memory` (whichever is later) will be lost. For more on switch memory and saving configuration changes, see Chapter 6, “Switch Memory and Configuration”.

### Privilege Levels at Logon

Privilege levels control the type of access to the CLI. To implement this control, you must set at least a Manager password. *Without a Manager password configured, anyone having serial port, Telnet, or web browser access to the switch can reach all CLI levels.* (For more on setting passwords, refer to the chapter on usernames and passwords in the *Access Security Guide* for your switch.)

When you use the CLI to log on to the switch, and passwords are set, you will be prompted to enter a password. For example:

```
ProCurve# _
Password: _
```

**Figure 4-1. Example of CLI Log-On Screen with Password(s) Set**

In the above case, you will enter the CLI at the level corresponding to the password you provide (operator or manager).

If no passwords are set when you log onto the CLI, you will enter at the Manager level. For example:

```
ProCurve# _
```
ProCurve strongly recommends that you configure a Manager password. If a Manager password is not configured, then the Manager level is not password-protected, and anyone having in-band or out-of-band access to the switch may be able to reach the Manager level and compromise switch and network security. Note that configuring only an Operator password does not prevent access to the Manager level by intruders who have the Operator password.

Pressing the Clear button on the front of the switch removes password protection. For this reason, it is recommended that you protect the switch from physical access by unauthorized persons. If you are concerned about switch security and operation, you should install the switch in a secure location, such as a locked wiring closet.

Privilege Level Operation

### Figure 4-2. Access Sequence for Privilege Levels

#### Operator Privileges

- 1. Operator Level

#### Manager Privileges

- 2. Manager Level
- 3. Global Configuration
- 4. Context Configuration Level

### Operator Privileges

At the Operator level you can examine the current configuration and move between interfaces without being able to change the configuration. A “>” character delimits the Operator-level prompt. For example:

ProCurve> _ (Example of the Operator prompt.)

When using `enable` to move to the Manager level, the switch prompts you for the Manager password if one has already been configured.
Manager Privileges

Manager privileges give you three additional levels of access: Manager, Global Configuration, and Context Configuration. (See figure.) A “#” character delimits any Manager prompt. For example:

ProCurve#_ Example of the Manager prompt.

- **Manager level:** Provides all Operator level privileges plus the ability to perform system-level actions that do not require saving changes to the system configuration file. The prompt for the Manager level contains only the system name and the “#” delimiter, as shown above. To select this level, enter the **enable** command at the Operator prompt and enter the Manager password, when prompted. For example:

  ProCurve> enable Enter enable at the Operator prompt.
  Password: CLI prompt for the Manager password.
  ProCurve# _ The Manager prompt appears after the correct Manager password is entered.

- **Global Configuration level:** Provides all Operator and Manager level privileges, and enables you to make configuration changes to any of the switch's software features. The prompt for the Global Configuration level includes the system name and “(config)”. To select this level, enter the **config** command at the Manager prompt. For example:

  ProCurve# config Enter config at the Manager prompt.
  ProCurve(config)#_ The Global Config prompt.

- **Context Configuration level:** Provides all Operator and Manager privileges, and enables you to make configuration changes in a specific context, such as one or more ports or a VLAN. The prompt for the Context Configuration level includes the system name and the selected context. For example:

  ProCurve(eth-1)#

  ProCurve(vlan-10)#

  The Context level is useful, for example, for executing several commands directed at the same port or VLAN, or if you want to shorten the command strings for a specific context area. To select this level, enter the specific context at the Global Configuration level prompt. For example, to select the context level for an existing VLAN with the VLAN ID of 10, you would enter the following command and see the indicated result:

  ProCurve(config)# vlan 10
  ProCurve(vlan-10)#
### Table 4-1. Privilege Level Hierarchy

<table>
<thead>
<tr>
<th>Privilege Level</th>
<th>Example of Prompt and Permitted Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Operator Privilege</strong></td>
<td></td>
</tr>
<tr>
<td>Operator Level</td>
<td>ProCurve&gt;</td>
</tr>
<tr>
<td></td>
<td>show &lt; command &gt;</td>
</tr>
<tr>
<td></td>
<td>setup</td>
</tr>
<tr>
<td></td>
<td>ping &lt; argument &gt;</td>
</tr>
<tr>
<td></td>
<td>link-test &lt; argument &gt;</td>
</tr>
<tr>
<td></td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>menu</td>
</tr>
<tr>
<td></td>
<td>logout</td>
</tr>
<tr>
<td></td>
<td>exit</td>
</tr>
<tr>
<td><strong>Manager Privilege</strong></td>
<td></td>
</tr>
<tr>
<td>Manager Level</td>
<td>ProCurve#</td>
</tr>
<tr>
<td></td>
<td>Perform system-level actions such as system control, monitoring, and diagnostic commands, plus any of the Operator-level commands. For a list of available commands, enter ? at the prompt.</td>
</tr>
<tr>
<td>Global Configuration Level</td>
<td>ProCurve(config)#</td>
</tr>
<tr>
<td></td>
<td>Execute configuration commands, plus all Operator and Manager commands. For a list of available commands, enter ? at the prompt.</td>
</tr>
<tr>
<td>Context Configuration Level</td>
<td>ProCurve(eth-5)#, ProCurve(vlan-100)#</td>
</tr>
<tr>
<td></td>
<td>Execute context-specific configuration commands, such as a particular VLAN or switch port. This is useful for shortening the command strings you type, and for entering a series of commands for the same context. For a list of available commands, enter ? at the prompt.</td>
</tr>
</tbody>
</table>
How To Move Between Levels

<table>
<thead>
<tr>
<th>Change in Levels</th>
<th>Example of Prompt, Command, and Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator level to Manager level</td>
<td>ProCurve&gt; enable&lt;br&gt;ProCurve&gt; Password:<em>&lt;br&gt;ProCurve#</em>&lt;br&gt;After you enter <strong>enable</strong>, the Password prompt appears. After you enter the Manager password, the system prompt appears with the # symbol:</td>
</tr>
<tr>
<td>Manager level to Global configuration level</td>
<td>ProCurve# config&lt;br&gt;ProCurve(config)#</td>
</tr>
<tr>
<td>Global configuration level to a Context configuration level</td>
<td>ProCurve(config)# vlan 10&lt;br&gt;ProCurve(vlan-10)#</td>
</tr>
</tbody>
</table>
| Context configuration level to another Context configuration level | ProCurve(vlan-10)# interface e 3<br>ProCurve(int-3)#<br>The CLI accepts “e” as the abbreviated form of “ethernet”.
| Move from any level to the preceding level | ProCurve(int-3)# exit<br>ProCurve(config)# exit<br>ProCurve# exit<br>ProCurve> |
| Move from any level to the Manager level | ProCurve(int-3)# end<br>ProCurve#<br>—or—
ProCurve(config)# end<br>ProCurve# |

Moving Between the CLI and the Menu Interface. When moving between interfaces, the switch retains the current privilege level (Manager or Operator). That is, if you are at the Operator level in the menu and select the **Command Line Interface (CLI)** option from the Main Menu, the CLI prompt appears at the Operator level.

Changing Parameter Settings. Regardless of which interface is used (CLI, menu interface, or web browser interface), the most recently configured version of a parameter setting overrides any earlier settings for that parameter.
For example, if you use the menu interface to configure an IP address of “X” for VLAN 1 and later use the CLI to configure a different IP address of “Y” for VLAN 1, then “Y” replaces “X” as the IP address for VLAN 1 in the running-config file. If you subsequently execute write memory in the CLI, then the switch also stores “Y” as the IP address for VLAN 1 in the startup-config file. (For more on the startup-config and running config files, see Chapter 6, “Switch Memory and Configuration”.)

Listing Commands and Command Options

At any privilege level you can:
- List all of the commands available at that level
- List the options for a specific command

Listing Commands Available at Any Privilege Level

At a given privilege level you can list and execute the commands that level offers, plus all of the commands available at preceding levels. For example, at the Operator level, you can list and execute only the Operator level commands. However, at the Manager level, you can list and execute the commands available at both the Operator and Manager levels.

**Type “?” To List Available Commands.** Typing the ? symbol lists the commands you can execute at the current privilege level. For example, typing ? at the Operator level produces this listing:

```
ProCurve> ?
  enable
  exit
  link-test
  logout
  menu
  ping
  show
  traceroute
  HPswitch >
```

*Figure 4-3. Example of the Operator Level Command Listing*
Typing ? at the Manager level produces this listing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boot</td>
<td>Reboot the device.</td>
</tr>
<tr>
<td>clear</td>
<td>Clear table/statistics or authorized client public keys.</td>
</tr>
<tr>
<td>configure</td>
<td>Enter the Configuration context.</td>
</tr>
<tr>
<td>copy</td>
<td>Copy datafiles to/from the switch.</td>
</tr>
<tr>
<td>debug</td>
<td>Enable/disable debug logging.</td>
</tr>
<tr>
<td>display</td>
<td>Display the running/saved configuration.</td>
</tr>
<tr>
<td>end</td>
<td>Return to the Manager Exec context.</td>
</tr>
<tr>
<td>erase</td>
<td>Erase the configuration file stored in flash or.</td>
</tr>
<tr>
<td>getMIB</td>
<td>Retrieve and display the value of the MIB objects specified.</td>
</tr>
<tr>
<td>kill</td>
<td>Kill other active console, telnet, or ssh sessions.</td>
</tr>
<tr>
<td>log</td>
<td>Display log events.</td>
</tr>
<tr>
<td>page</td>
<td>Toggle paging mode.</td>
</tr>
<tr>
<td>print</td>
<td>Execute a command and redirect its output to the device channel for current session.</td>
</tr>
<tr>
<td>redo</td>
<td>Re-execute a command from history.</td>
</tr>
<tr>
<td>reload</td>
<td>Warm reboot of the switch.</td>
</tr>
<tr>
<td>repeat</td>
<td>Repeat execution of a previous command.</td>
</tr>
<tr>
<td>setMIB</td>
<td>Set the value of a MIB object.</td>
</tr>
<tr>
<td>setup</td>
<td>Enter the 'Switch Setup' screen for basic switch configuration.</td>
</tr>
</tbody>
</table>

When -- MORE -- appears, use the Space bar or [Return] to list additional commands.

Figure 4-4. Example of the Manager-Level Command Listing

When -- MORE -- appears, there are more commands in the listing. To list the next screenfull of commands, press the Space bar. To list the remaining commands one-by-one, repeatedly press [Enter].

Typing ? at the Global Configuration level or the Context Configuration level produces similar results.

Use [Tab] To Search for or Complete a Command Word. You can use [Tab] to help you find CLI commands or to quickly complete the current word in a command. To do so, type one or more consecutive characters in a command and then press [Tab] (with no spaces allowed). For example, at the Global Configuration level, if you press [Tab] immediately after typing “t”, the CLI displays the available command options that begin with “t”. For example:

ProCurve(config)# t [Tab]
tacacs-server
telnet-server
time
timesync
trunk
telnet
terminal
traceroute
ProCurve(config)# t
As mentioned above, if you type part of a command word and press [Tab], the CLI completes the current word (if you have typed enough of the word for the CLI to distinguish it from other possibilities), including hyphenated extensions. For example:

```
ProCurve(config)# port-[Tab]
ProCurve(config)# port-security _
```

Pressing [Tab] after a completed command word lists the further options for that command.

```
ProCurve(config)# qos [Tab]
```

- `udp-port` Set UDP port based priority.
- `tcp-port` Set TCP port based priority.
- `device-priority` Configure device-based priority.
- `dscp-map` Define mapping between a DSCP (Differentiated-Services Codepoint) value and 802.1p priority.
- `type-of-service` Configure the Type-of-Service method the device uses to prioritize IP traffic.

**Listing Command Options**

You can use the CLI to remind you of the options available for a command by entering command keywords followed by ?. For example, suppose you want to see the command options for configuring the console settings:

```
ProCurve(config)#_console_
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>baud-rate</code></td>
<td>Set the data transmission speed for the device connect sessions initiated through the Console port.</td>
</tr>
<tr>
<td><code>events</code></td>
<td>Set level of the events displayed in the device's Events Log.</td>
</tr>
<tr>
<td><code>flow-control</code></td>
<td>Set the Flow Control Method; default is xon-xoff.</td>
</tr>
<tr>
<td><code>inactivity-timer</code></td>
<td>Set the number of minutes of no activity detected on the Console port before the switch terminates a communication session.</td>
</tr>
<tr>
<td><code>screen-refresh</code></td>
<td>Set default number of seconds before screen is refreshed on the repeat command.</td>
</tr>
<tr>
<td><code>terminal</code></td>
<td>Set type of terminal being used (default is vt100).</td>
</tr>
</tbody>
</table>

Figure 4-5. Example of How To List the Options for a Specific Command
Displaying CLI “Help”

CLI Help provides two types of context-sensitive information:
- Command list with a brief summary of each command’s purpose
- Detailed information on how to use individual commands

Displaying Command-List Help.

Syntax: help

Displays a listing of command Help summaries for all commands available at the current privilege level. That is, at the Operator level, executing help displays the Help summaries only for Operator-Level commands. At the Manager level, executing help displays the Help summaries for both the Operator and Manager levels, and so on.

For example, to list the Operator-Level commands with their purposes:

```
ProCurve> help

enable
exit
link-test
logout
menu
ping
show
traceroute
```

Enter the Manager Exec context.
Return to the previous context or terminate current console/telnet session if you are in the Operator context level.
Test the connection to a MAC address on the LAN.
Terminate this console/telnet session.
Change console user interface to menu system.
Send IP Ping requests to a device on the network.
Display switch operation information.
Send traceroute to a device on the network.

Figure 4-6. Example of Context-Sensitive Command-List Help

Displaying Help for an Individual Command.

Syntax: <command-string> help

This option displays Help for any command available at the current context level.

For example, to list the Help for the interface command in the Global Configuration privilege level:
Using the Command Line Interface (CLI)

Using the CLI

Figure 4-7. Example of How To Display Help for a Specific Command

Note that trying to list the help for an individual command from a privilege level that does not include that command results in an error message. For example, trying to list the help for the interface command while at the global configuration level produces this result:

```
ProCurve# speed-duplex help
Invalid input: speed-duplex
```
Configuration Commands and the Context Configuration Modes

You can execute any configuration command in the global configuration mode or in selected context modes. However, using a context mode enables you to execute context-specific commands faster, with shorter command strings.

The switch offers interface (port or trunk group) and VLAN context configuration modes:

**Port or Trunk-Group Context**. Includes port- or trunk-specific commands that apply only to the selected port(s) or trunk group, plus the global configuration, Manager, and Operator commands. The prompt for this mode includes the identity of the selected port(s):

```
ProCurve(config)# interface c3-c6
ProCurve(eth-C5-C8)#

ProCurve(config)# interface trk1
ProCurve(eth-Trk1)#
```

Commands executed at configuration level for entering port and `trk1` static trunk-group contexts, and resulting prompts showing port or static trunk contexts.

```
ProCurve(eth-C5-C8)#
ProCurve(eth-Trk1)#

ProCurve(eth-C5-C8)# ?
ProCurve(eth-C5-C8)# ?
```

Lists the commands you can use in the port or static trunk context, plus the Manager, Operator, and context commands you can execute at this level.
In the port context, the first block of commands in the “?” listing show the context-specific commands that will affect only ports C3-C6.

```
ProCurve(eth-3-6)# ?
broadcast-limit  Set a broadcast traffic percentage limit.
   disable       Disable port(s).
   enable        Enable port(s).
   flow-control  Enable/disable flow control on the port(s).
   gvrp          Set the GVRP timers on the port (hundredths of a second).
   lacp          Define whether LACP is enabled on the port, and whether it is in active or passive mode when enabled.
   mdix-mode     Set port MDI/MDIX mode (default: auto).
   monitor       Define either the port is to be monitored or not.
   name          Set/unset a name for the port(s).
   qos           Set port-based priority.
   rate-limit    Enable/disable and configure rate-limiting for incoming traffic on the port(s).
   speed-duplex  Define mode of operation for the port(s).
   unknown-vlans Configure GVRP on the port(s).

interface      Enter the Interface Configuration Level, or execute one command for that level.
   vlan         Add, delete, edit VLAN configuration or enter a VLAN context.
```

The remaining commands in the listing are Manager, Operator, and context commands.

Figure 4-8. Context-Specific Commands Affecting Port Context
**VLAN Context**. Includes VLAN-specific commands that apply only to the selected VLAN, plus Manager and Operator commands. The prompt for this mode includes the VLAN ID of the selected VLAN. For example, if you had already configured a VLAN with an ID of 100 in the switch:

```
ProCurve(config)# vlan 100
```

*Command executed at configuration level to enter VLAN 100 context.*

```
ProCurve(vlan-100)#
```

*Resulting prompt showing VLAN 100 context.*

```
ProCurve(vlan-100)# ?
```

*Lists commands you can use in the VLAN context, plus Manager, Operator, and context commands you can execute at this level.*

![Context-Specific Commands Affecting VLAN Context](image)

**Figure 4-9. Context-Specific Commands Affecting VLAN Context**
## CLI Control and Editing

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ctrl] [A]</td>
<td>Jumps to the first character of the command line.</td>
</tr>
<tr>
<td>[Ctrl] [B] or ←</td>
<td>Moves the cursor back one character.</td>
</tr>
<tr>
<td>[Ctrl] [C]</td>
<td>Terminates a task and displays the command prompt.</td>
</tr>
<tr>
<td>[Ctrl] [D]</td>
<td>Deletes the character at the cursor.</td>
</tr>
<tr>
<td>[Ctrl] [E]</td>
<td>Jumps to the end of the current command line.</td>
</tr>
<tr>
<td>[Ctrl] [F] or →</td>
<td>Moves the cursor forward one character.</td>
</tr>
<tr>
<td>[Ctrl] [K]</td>
<td>Deletes from the cursor to the end of the command line.</td>
</tr>
<tr>
<td>[Ctrl] [L] or [Ctrl] [R]</td>
<td>Repeats current command line on a new line.</td>
</tr>
<tr>
<td>[Ctrl] [N] or ↓</td>
<td>Enters the next command line in the history buffer.</td>
</tr>
<tr>
<td>[Ctrl] [P] or ↑</td>
<td>Enters the previous command line in the history buffer.</td>
</tr>
<tr>
<td>[Ctrl] [U] or [Ctrl] [X]</td>
<td>Deletes from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>[Ctrl] [W]</td>
<td>Deletes the last word typed.</td>
</tr>
<tr>
<td>[Esc] [B]</td>
<td>Moves the cursor backward one word.</td>
</tr>
<tr>
<td>[Esc] [D]</td>
<td>Deletes from the cursor to the end of the word.</td>
</tr>
<tr>
<td>[Esc] [F]</td>
<td>Moves the cursor forward one word.</td>
</tr>
<tr>
<td>[Backspace]</td>
<td>Deletes the first character to the left of the cursor in the command line.</td>
</tr>
<tr>
<td>[Spacebar]</td>
<td>Moves the cursor forward one character.</td>
</tr>
</tbody>
</table>
Using the ProCurve Web Browser Interface

Contents

Overview ................................................................. 5-2
General Features ...................................................... 5-3

Starting a Web Browser
Interface Session with the Switch ....................... 5-4
  Using a Standalone Web Browser in a PC or UNIX Workstation ... 5-4
  Using ProCurve Manager (PCM) or
  ProCurve Manager Plus (PCM+) .............................. 5-5

Tasks for Your First ProCurve Web Browser Interface Session 5-7
  Viewing the “First Time Install” Window ...................... 5-7
  Security: Creating Usernames and Passwords
  in the Browser Interface ........................................ 5-8
    Entering a User Name and Password ....................... 5-10
    Using a User Name ........................................... 5-10
    If You Lose the Password ................................... 5-10
  Online Help for the Web Browser Interface .................. 5-11

Support/Mgmt URLs Feature ........................................ 5-12
  Support URL ...................................................... 5-13
  Help and the Management Server URL ...................... 5-13
  Using the PCM Server for Switch Web Help ................. 5-14

Status Reporting Features ......................................... 5-16
  The Overview Window .......................................... 5-16
  The Port Utilization and Status Displays ................... 5-17
    Port Utilization .............................................. 5-17
    Port Status .................................................... 5-19
  The Alert Log .................................................... 5-20
    Sorting the Alert Log Entries .............................. 5-20
    Alert Types and Detailed Views ............................. 5-21
  The Status Bar .................................................... 5-22
  Setting Fault Detection Policy ............................... 5-24
Overview

The ProCurve web browser interface built into the switch lets you easily access the switch from a browser-based PC on your network. This lets you do the following:

■ Optimize your network uptime by using the Alert Log and other diagnostic tools
■ Make configuration changes to the switch
■ Maintain security by configuring usernames and passwords

This chapter covers the following:
■ General features (page 5-3).
■ Starting a web browser interface session (page 5-4)
■ Tasks for your first web browser interface session (page 5-7):
  • Creating usernames and passwords in the web browser interface (page 5-8)
  • Selecting the fault detection configuration for the Alert Log operation (page 5-24)
  • Getting access to online help for the web browser interface (page 5-11)
■ Description of the web browser interface:
  • Overview window and tabs (page 5-16)
  • Port Utilization and Status displays (page 5-17)
  • Alert Log and Alert types (page 5-20)
  • Setting the Fault Detection Policy (page 5-24)

Note

You can disable access to the web browser interface by either executing no web-management at the Command Prompt or changing the Web Agent Enabled parameter setting to No (page 7-4).

For information on operating system, browser, and Java versions for the switches covered in this guide, go to the ProCurve Networking web site at www.procurve.com and:

Click on: Technical support
Click on: FAQs (all)
Select a switch series (such as ProCurve Switch 5400 Series)
Scroll to General Product Information.
General Features

The web browser interface includes these features:

Switch Identity and Status:
- General system data
- Software version
- IP address
- Status Overview
- Port utilization
- Port counters
- Port status
- Alert log

Switch Configuration:
- Device view
- Port configuration
- VLAN configuration
- Fault detection
- Quality of service (QoS)
- Port monitoring (mirroring)
- System information
- IP configuration
- Support and management server URLs
- Device features (Spanning Tree On/Off, VLAN selection, and IGMP)

Switch Security:
- User names and passwords
- Authorized Addresses
- Intrusion Log
- SSL
- RADIUS authentication (Refer to the Access Security Guide.)

Switch Diagnostics:
- Ping/Link Test
- Device reset
- Configuration report
Starting a Web Browser Interface Session with the Switch

You can start a web browser session in the following ways:

- Using a standalone web browser on a network connection from a PC or UNIX workstation:
  - Directly connected to your network
  - Connected through remote access to your network
- Using a network management station running ProCurve Manager on your network

Using a Standalone Web Browser in a PC or UNIX Workstation

This procedure assumes that you are using a compatible web browser and that the switch is configured with an IP address accessible from your PC or workstation. (For more on assigning an IP address, refer to “IP Configuration” on page 8-2.)

1. Ensure that the Java™ applets are enabled for your browser. For more information on this topic, refer to your browser’s online Help.

2. Use the web browser to access the switch. If your network includes a Domain Name Server (DNS), your switch’s IP address may have a name associated with it (for example, switch5406) that you can type in the Location or Address field instead of the IP address. Using DNS names typically improves browser performance. Contact your network administrator to enquire about DNS names associated with your ProCurve switch.

Type the IP address (or DNS name) of the switch in the browser Location or Address (URL) field and press [Enter]. (It is not necessary to include http://.)

- switch5308  [Enter]   (example of a DNS-type name)
- 10.11.12.195  [Enter]   (example of an IP address)
Using ProCurve Manager (PCM) or ProCurve Manager Plus (PCM+)

ProCurve Manager and ProCurve Manager Plus are designed for installation on a network management workstation. For this reason, the system requirements are different from the system requirements for accessing the switch’s web browser interface from a non-management PC or workstation. For PCM and PCM+ requirements, refer to the information provided with the software.

This procedure assumes that:

■ You have installed the recommended web browser on a PC or workstation that serves as your network management station.

■ The networked device you want to access has been assigned an IP address and (optionally) a DNS name, and has been discovered by PCM or PCM+. (For more on assigning an IP address, refer to “IP Configuration” on page 8-2.)

To establish a web browser session with PCM or PCM+ running, do the following on the network management station:

1. Make sure the Java™ applets are enabled for your web browser. If they are not, refer to the web browser online Help for specific information on enabling the Java applets.

2. In the Interconnected Devices listing under Network Manager Home (in the PCM/PCM+ sidebar), right-click on the model number of the device you want to access.

3. The web browser interface automatically starts with the Status Overview window displayed for the selected device, as shown in figure 5-1.

Note
If the Registration window appears, click on the Status tab.
Figure 5-1. Example of Status Overview Screen
Tasks for Your First ProCurve Web Browser Interface Session

The first time you access the web browser interface, there are three tasks you should perform:

- Review the “First Time Install” window
- Set Manager and Operator passwords
- Set access to the web browser interface online help

Viewing the “First Time Install” Window

When you access the switch’s web browser interface for the first time, the Alert log contains a “First Time Install” alert, as shown in figure 5-2. This gives you information about first time installations, and provides an immediate opportunity to set passwords for security and to specify a Fault Detection policy, which determines the types of messages that will be displayed in the Alert Log.

Double click on First Time Install in the Alert log (figure 5-1 on page 5-6). The web browser interface then displays the “First Time Install” window, below.

![First-Time Install Window](image-url)
This window is the launching point for the basic configuration you need to perform to set web browser interface passwords for maintaining security and a fault detection policy, which determines the types of messages that the Alert Log displays.

To set web browser interface passwords, click on secure access to the device to display the Device Passwords screen, and then go to the next page. (You can also access the password screen by clicking on the Security tab.)

To set Fault Detection policy, click on select the fault detection configuration in the second bullet in the window and go to the section, “Setting Fault Detection Policy” on page 5-24. (You can also access the password screen by clicking on the Configuration tab, and then the [Fault Detection] key.)

Security: Creating Usernames and Passwords in the Browser Interface

Note

On the switches covered in this guide you can also configure RADIUS authentication for web browser interface access. For more information, refer to the chapter titled “RADIUS Authentication and Accounting” in the Access Security Guide for your switch.

You may want to create both a username and a password to create access security for your switch. There are two levels of access to the interface that can be controlled by setting user names and passwords:

- **Operator Setting.** An Operator-level user name and password allows read-only access to most of the web browser interface, but prevents access to the Security window.

- **Manager Setting.** A Manager-level user name and password allows full read/write access to the web browser interface.
To set the passwords:

1. Access the Device Passwords screen by one of the following methods:
   - If the Alert Log includes a “First Time Install” event entry, double click on this event, then, in the resulting display, click on the secure access to the device link.
   - Select the Security tab.

2. Click in the appropriate box in the Device Passwords window and enter user names and passwords. You will be required to repeat the password strings in the confirmation boxes.

   Both the user names and passwords can be up to 16 printable ASCII characters.

3. Click on [Apply Changes] to activate the user names and passwords.

**Note**

Passwords you assign in the web browser interface will overwrite previous passwords assigned in either the web browser interface, the CLI, or the menu interface. That is, the most recently assigned passwords are the switch’s passwords, regardless of which interface was used to assign the string.
Entering a User Name and Password

![Password Prompt in the Web Browser Interface](image)

**Figure 5-4. Example of the Password Prompt in the Web Browser Interface**

The manager and operator passwords are used to control access to all switch interfaces. Once set, you will be prompted to supply the password every time you try to access the switch through any of its interfaces. The password you enter determines the capability you have during that session:

- Entering the manager password gives you full read/write/troubleshooting capabilities
- Entering the operator password gives you read and limited troubleshooting capabilities.

Using a User Name

If you also set user names in the web browser interface screen, you must supply the correct user name for web browser interface access. If a user name has not been set, then leave the User Name field in the password window blank.

Note that the Command Prompt and switch console interfaces use only the password, and do not prompt you for the User Name.

If You Lose the Password

If you lose the passwords, you can clear them by pressing the Clear button on the front of the switch. *This action deletes all password and user name protection from all of the switch’s interfaces.*
The Clear button is provided for your convenience, but its presence means that if you are concerned with the security of the switch configuration and operation, you should make sure the switch is installed in a secure location, such as a locked wiring closet. (For more information, refer to “Front Panel Security” in the chapter titled “Configuring Username and Password Security” in the Access Security Guide for your switch.)

Online Help for the Web Browser Interface

Online Help is available for the web browser interface. You can use it by clicking on the question mark button in the upper right corner of any of the web browser interface screens.

![The Help Button](image)

Context-sensitive help is provided for the screen you are on.

**Note**

To access the online Help for the ProCurve web browser interface, you need either ProCurve Manager (version 1.5 or greater) installed on your network or an active connection to the World Wide Web. Otherwise, Online help for the web browser interface will not be available.

For more on Help access and operation, refer to “Help and the Management Server URL” on page 5-13.
Support/Mgmt URLs Feature

The Support/Mgmt URLs window enables you to change the World Wide Web Universal Resource Locator (URL) for two functions:

- **Support URL** – A support information site for your switch
- **Management Server URL** – The web site for web browser online Help

![Figure 5-6. The Default Support/Mgmt URLs Window](image)

3. Enter one of the following (or use the default setting):
   - The URL for the support information source you want the switch to access when you click on the web browser interface Support tab. The default is the URL for the ProCurve Networking home page.
   - The URL of a PCM (ProCurve Network Manager) workstation or other server for the online Help files for this web browser interface. (The default setting accesses the switch's browser-based Help on the ProCurve World Wide Web site.) Note that if you install PCM in your network, the PCM management station acts as the web browser Help server and automatically inserts the necessary URL in this field.

4. Click on **Apply Changes**
Support URL

This is the site the switch accesses when you click on the Support tab on the web browser interface. The default URL is:

www.procurve.com

which is the World Wide Web site for ProCurve networking products. Click on technical support on that page to get support information regarding your switch, including white papers, software updates, and more.

As an alternative, you can replace the ProCurve URL with the URL for a local site used for logging reports on network performance or other support activities.

Help and the Management Server URL

The Management Server URL field specifies the URL the switch uses to find online Help for the web browser interface.

- If you install PCM (ProCurve Manager) in your network, the PCM management station acts as the web browser Help server for the switch and automatically inserts the necessary URL in this field. For more on the option, refer to “Using the PCM Server for Switch Web Help on page 5-14.)

- In the default configuration (and if PCM is not running on your network) this field is set to the URL for accessing online Help from the ProCurve Networking web site:

  www.hp.com/rnd/device_help

Using this option, the Help files are automatically available if your workstation can access the World Wide Web. In this case, if Online Help fails to operate, ensure that the above URL appears in the Management Server URL field shown in figure 5-7:
Using the ProCurve Web Browser Interface
Support/Mgmt URLs Feature

For ProCurve devices that support the “Web Help” feature, you can use the
PCM server to host the switch help files for devices that do not have HTTP
access to the ProCurve Support Web site.

1. Go to the ProCurve Support web site to get the Device Help files:

   www.hp.com/rnd/device_help/

2. Copy the Web help files to the PCM server, under:

   C:\program files\hewlett-packard\pnm\server\webroot\rnd\service_help\help\hpwnd\webhelp
3. Add an entry, or edit the existing entry in the Discovery portion of the
global properties (globalprops.prp) in PCM to redirect the switches to the
help files on the PCM server. For example:

```plaintext
Global {
    TempDir=data/temp
    ...
    Discovery{
        ...
        ...
                    ...
    }
}
```

You will enter the IP address for your PCM server. 8040 is the standard port
number to use.

4. Restart the Discovery process for the change to be applied.

**Note**

Changing the Discovery's Global properties file will redirect the Device Help
URL for all devices.

If you just want to change the Device Help URL for a particular device, then
go to the Configuration tab on the Web UI for that device and select the
“Support/Mgmt URL” button. Edit the entry in the “Management Server URL”
field for the device to point to the PCM server; for example:

```
http://15.29.37.12.8040/rnd/device_help
```
Status Reporting Features

Browser elements covered in this section include:
- The Overview window (below)
- Port utilization and status (page 5-17)
- The Alert log (page 5-20)
- The Status bar (page 5-22)

The Overview Window

The Overview Window is the home screen for any entry into the web browser interface. The following figure identifies the various parts of the screen.

Figure 5-8. The Status Overview Window

Policy Management and Configuration. PCM can perform network-wide policy management and configuration of your switch. The Management Server URL field (page 5-13) shows the URL for the management station performing that function. For more information, refer to the documentation provided with the PCM software.
The Port Utilization and Status Displays

The Port Utilization and Status displays show an overview of the status of the switch and the amount of network activity on each port. The following figure shows a sample reading of the Port Utilization and Port Status.

**Figure 5-9. The Graphs Area**

**Port Utilization**

The Port Utilization bar graphs show the network traffic on the port with a breakdown of the packet types that have been detected (unicast packets, non-unicast packets, and error packets). The Legend identifies traffic types and their associated colors on the bar graph:

- **% Unicast Rx & All Tx**: This is all unicast traffic received and all transmitted traffic of any type. This indicator (a blue color on many systems) can signify either transmitted or received traffic.

- **% Non-Unicast Pkts Rx**: All multicast and broadcast traffic received by the port. This indicator (a gold color on many systems) enables you to know “at-a-glance” the source of any non-unicast traffic that is causing high utilization of the switch. For example, if one port is receiving heavy broadcast or multicast traffic, all ports will become highly utilized. By color-coding the received broadcast and multicast utilization, the bar graph quickly and easily identifies the offending port. This makes it faster and easier to discover the exact source of the heavy traffic because you don’t have to examine port counter data from several ports.

- **% Error Pkts Rx**: All error packets received by the port. (This indicator is a reddish color on many systems.) Although errors received on a port are not propagated to the rest of the network, a consistently high number of errors on a specific port may indicate a problem on the device or network segment connected to the indicated port.
- **Maximum Activity Indicator:** As the bars in the graph area change height to reflect the level of network activity on the corresponding port, they leave an outline to identify the maximum activity level that has been observed on the port.

**Utilization Guideline.** A network utilization of 40% is considered the maximum that a typical Ethernet-type network can experience before encountering performance difficulties. If you observe utilization that is consistently higher than 40% on any port, click on the Port Counters button to get a detailed set of counters for the port.

**To change the amount of bandwidth the Port Utilization bar graph shows.** Click on the bandwidth display control button in the upper left corner of the graph. (The button shows the current scale setting, such as 40%). In the resulting menu, select the bandwidth scale you want the graph to show (3%, 10%, 25%, 40%, 75%, or 100%), as shown in figure figure 5-10.

Note that when viewing activity on a gigabit port, you may want to select a lower value (such as 3% or 10%). This is because the bandwidth utilization of current network applications on gigabit links is typically minimal, and may not appear on the graph if the scale is set to show high bandwidth utilization.

![Figure 5-10. Changing the Graph Area Scale](image)

**To display values for each graph bar.** Hold the mouse cursor over any of the bars in the graph, and a pop-up display is activated showing the port identification and numerical values for each of the sections of the bar, as shown in figure figure 5-11 (next).

![Figure 5-11. Display of Numerical Values for the Bar](image)
Port Status

The Port Status indicators show a symbol for each port that indicates the general status of the port. There are four possible statuses:

- **Port Connected** – the port is enabled and is properly connected to an active network device.

- **Port Not Connected** – the port is enabled but is not connected to an active network device. A cable may not be connected to the port, or the device at the other end may be powered off or inoperable, or the cable or connected device could be faulty.

- **Port Disabled** – the port has been configured as disabled through the web browser interface, the switch console, or SNMP network management.

- **Port Fault-Disabled** – a fault condition has occurred on the port that has caused it to be auto-disabled. Note that the Port Fault-Disabled symbol will be displayed in the legend only if one or more of the ports is in that status. See appendix B, “Monitoring and Analyzing Switch Operation” for more information.

Figure 5-12. The Port Status Indicators and Legend
The Alert Log

The web browser interface Alert Log, shown in the lower half of the screen, shows a list of network occurrences, or alerts, that were detected by the switch. Typical alerts are Broadcast Storm, indicating an excessive number of broadcasts received on a port, and Problem Cable, indicating a faulty cable. A full list of alerts is shown in the table on page 5-21.

<table>
<thead>
<tr>
<th>Status</th>
<th>Alert</th>
<th>Date / Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First time installation</td>
<td>Oct 13, 2005 11:02:47 AM</td>
<td>Important installation information for your switch</td>
</tr>
</tbody>
</table>

Figure 5-13. Example of the Alert Log

Each alert has the following fields of information:

- **Status** – The level of severity of the event generated. Severity levels can be Information, Normal, Warning, and Critical. If the alert is new (has not yet been acknowledged), the New symbol is also in the Status column.
- **Alert** – The specific event identification.
- **Date/Time** – The date and time the event was received by the web browser interface. This value is shown in the format: **DD-MM-YY HH:MM:SS AM/PM**, for example, **16-Sep-99 7:58:44 AM**.
- **Description** – A short narrative statement that describes the event. For example, **Excessive CRC/Alignment errors on port: 8**.

Sorting the Alert Log Entries

The alerts are sorted, by default, by the Date/Time field with the most recent alert listed at the top of the list. The second most recent alert is displayed below the top alert and so on. If alerts occurred at the same time, the simultaneous alerts are sorted by order in which they appear in the MIB.

**Bold** characters in a column heading indicate that the alert field alert log entries. You can sort by any of the other columns by clicking on the column heading. The **Alert** and **Description** columns are sorted alphabetically, while the **Status** column is sorted by severity type, with more critical severity indicators appearing above less critical indicators.
Alert Types and Detailed Views

As of April, 2004, the web browser interface generates the following alert types:

- Auto Partition
- Backup Transition
- Excessive broadcasts
- Excessive CRC/alignment errors
- Excessive jabbering
- Excessive late collisions
- First Time Install
- Full-Duplex Mismatch
- Half-Duplex Mismatch
- High collision or drop rate
- Loss of Link
- Mis-Configured SQE
- Network Loop
- Polarity Reversal
- Security Violation
- Stuck 10BaseT Port
- Too many undersized (runt)/giant packets
- Transceiver Hot Swap

When troubleshooting the sources of alerts, it may be helpful to check the switch’s Port Status and Port Counter windows, or use the CLI or menu interface to view the switch’s Event Log.

When you double click on an Alert Entry, the web browser interface displays a separate window showing information about the event. This view includes a description of the problem and a possible solution. It also provides three management buttons:

- **Acknowledge Event** – removes the New symbol from the log entry
- **Delete Event** – removes the alert from the Alert Log
- **Cancel** – closes the detail view with no change to the status of the alert and returns you to the Overview screen.

For example, figure 5-14 shows a sample detail view describing an Excessive CRC/Alignment Error alert.
Using the ProCurve Web Browser Interface

Status Reporting Features

Figure 5-14. Example of Alert Log Detail View

The Status Bar

The Status Bar appears in the upper left corner of the web browser interface window. Figure 5-15 shows an expanded view of the status bar.
The Status bar includes four objects:

- **Status Indicator.** Indicates, by icon, the severity of the most critical alert in the current display of the Alert Log. This indicator can be one of four shapes and colors, as shown below.

**Table 5-1. Status Indicator Key**

<table>
<thead>
<tr>
<th>Color</th>
<th>Switch Status</th>
<th>Status Indicator Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Normal Activity; “First time installation” information available in the Alert log.</td>
<td>🔄</td>
</tr>
<tr>
<td>Green</td>
<td>Normal Activity</td>
<td>🟢</td>
</tr>
<tr>
<td>Yellow</td>
<td>Warning</td>
<td>🟠</td>
</tr>
<tr>
<td>Red</td>
<td>Critical</td>
<td>🔴</td>
</tr>
</tbody>
</table>

- **System Name.** The name you can configure for the switch by using the System Info window (under the Configuration tab), the hostname < ascii-string > command in the CLI, or the System Name field in the "System Information" screen in the System Info screen of the menu interface.

- **Most Critical Alert Description.** A brief description of the earliest, unacknowledged alert with the current highest severity in the Alert Log, appearing in the right portion of the Status Bar. In instances where multiple critical alerts have the same severity level, only the earliest unacknowledged alert is deployed in the Status bar.

- **Product Name.** The product name of the switch to which you are connected in the current web browser interface session.
Setting Fault Detection Policy

One of the powerful features in the web browser interface is the Fault Detection facility. For your switch, this feature controls the types of alerts reported to the Alert Log based on their level of severity.

Set this policy in the Fault Detection window (figure 5-16).

![Figure 5-16. The Fault Detection Window](image)

The Fault Detection screen contains a list box for setting fault detection and response policy, and enables you to set the sensitivity level at which a network problem should generate an alert and send it to the Alert Log.
To provide the most information on network problems in the Alert Log, the recommended sensitivity level for Log Network Problems is High Sensitivity. The Fault Detection settings are:

- **High Sensitivity.** This policy directs the switch to send all alerts to the Alert Log. This setting is most effective on networks that have none or few problems.

- **Medium Sensitivity.** This policy directs the switch to send alerts related to network problems to the Alert Log. If you want to be notified of problems which cause a noticeable slowdown on the network, use this setting.

- **Low Sensitivity.** This policy directs the switch to send only the most severe alerts to the Alert Log. This policy is most effective on a network where there are normally a lot of problems and you want to be informed of only the most severe ones.

- **Never.** Disables the Alert Log and transmission of alerts (traps) to the management server (in cases where a network management tool such as ProCurve Manager is in use). Use this option when you don’t want to use the Alert Log.

The Fault Detection Window also contains three Change Control Buttons:

- **Apply Changes.** This button stores the settings you have selected for all future sessions with the web browser interface until you decide to change them.

- **Clear Changes.** This button removes your settings and returns the settings for the list box to the level it was at in the last saved detection-setting session.

- **Reset to Default Settings.** This button reverts the policy setting to Medium Sensitivity for Log Network Problems.
Switch Memory and Configuration

Contents

Overview ................................................................. 6-3
Overview of Configuration File Management ................. 6-3
Using the CLI To Implement Configuration Changes ........ 6-6
Using the Menu and Web Browser Interfaces To Implement Configuration Changes ................... 6-9
   Menu: Implementing Configuration Changes ............... 6-9
      Using Save and Cancel in the Menu Interface .......... 6-10
      Rebooting from the Menu Interface ..................... 6-11
   Web: Implementing Configuration Changes ................ 6-12
Using Primary and Secondary Flash Image Options .......... 6-13
   Displaying the Current Flash Image Data .................. 6-13
   Switch Software Downloads ................................. 6-15
   Local Switch Software Replacement and Removal ........ 6-16
   Rebooting the Switch ........................................ 6-18
   Operating Notes .............................................. 6-21
Multiple Configuration Files ....................................... 6-22
   General Operation .......................................... 6-23
   Transitioning to Multiple Configuration Files .......... 6-25
   Listing and Displaying Startup-Config Files ............ 6-25
      Viewing the Startup-Config File Status with Multiple Configuration Enabled ............ 6-26
      Displaying the Content of A Specific Startup-Config File ............. 6-27
   Changing or Overriding the Reboot Configuration Policy ...... 6-27
   Managing Startup-Config Files in the Switch ............ 6-29
      Renaming an Existing Startup-Config File .............. 6-30
      Creating a New Startup-Config File .................... 6-30
      Erasing a Startup-Config File ........................... 6-32
Using the Clear + Reset Button Combination To Reset the Switch to Its Default Configuration .................................................. 6-33

Transferring Startup-Config Files To or From a Remote Server ..... 6-35
  TFTP: Copying a Configuration File to a Remote Host .......... 6-35
  TFTP: Copying a Configuration File from a Remote Host ...... 6-35
  Xmodem: Copying a Configuration File to a Serially Connected Host ................................................................. 6-36
  Xmodem: Copying a Configuration from a Serially Connected Host ................................................................. 6-36

Operating Notes for Multiple Configuration Files ................. 6-36
Overview

This chapter describes:
- How switch memory manages configuration changes
- How the CLI implements configuration changes
- How the menu interface and web browser interface implement configuration changes
- How the switch provides software options through primary/secondary flash images
- How to use the switch’s primary and secondary flash options, including displaying flash information, booting or restarting the switch, and other topics

Overview of Configuration File Management

The switch maintains two configuration files, the `running-config` file and the `startup-config` file.

![Figure 6-1. Conceptual Illustration of Switch Memory Operation](image)

- **Volatile Memory**
  - **Running-Config File**
    - (Controls switch operation. When the switch boots, the contents of this file are erased and replaced by the contents of the startup-config file.)
  - **CLI configuration changes are written to this file. To use the CLI to save the latest version of this file to the startup-config file, you must execute the `write memory` command.**

- **Flash (Non-Volatile) Memory**
  - **Startup-Config File**
    - (Preserves the most recently saved configuration through any subsequent reboot.)
  - **Menu interface configuration changes are simultaneously written to both of these files.**
Switch Memory and Configuration
Overview of Configuration File Management

- **Running Config File:** Exists in volatile memory and controls switch operation. If no configuration changes have been made in the CLI since the switch was last booted, the running-config file is identical to the startup-config file.

- **Startup-config File:** Exists in flash (non-volatile) memory and is used to preserve the most recently-saved configuration as the “permanent” configuration.

Booting the switch replaces the current running-config file with a new running-config file that is an exact copy of the current startup-config file.

---

**Note**

Any of the following actions boots the switch:

- Executing the `boot` or the `reload` command in the CLI
- Executing the `boot` command in the menu interface
- Pressing the Reset button on the front of the switch
- Removing, then restoring power to the switch

For more on reboots and the switch’s dual-flash images, refer to “Using Primary and Secondary Flash Image Options” on page 6-13.

---

**Options for Saving a New Configuration.** Making one or more changes to the running-config file creates a new operating configuration. *Saving* a new configuration means to overwrite (replace) the current startup-config file with the current running-config file. This means that if the switch subsequently reboots for any reason, it will resume operation using the new configuration instead of the configuration previously defined in the startup-config file. There are three ways to save a new configuration:

- **In the CLI:** Use the `write memory` command. This overwrites the current startup-config file with the contents of the current running-config file.

- **In the menu interface:** Use the `Save` command. This overwrites *both* the running-config file and the startup-config file with the changes you have specified in the menu interface screen.

- **In the web browser interface:** Use the `[Apply Changes]` button or other appropriate button. This overwrites *both* the running-config file and the startup-config file with the changes you have specified in the web browser interface window.

Note that using the CLI instead of the menu or web browser interface gives you the option of changing the running configuration without affecting the startup configuration. This allows you to test the change without making it
“permanent”. When you are satisfied that the change is satisfactory, you can make it permanent by executing the `write memory` command. For example, suppose you use the following command to disable port 5:

```
ProCurve(config)# interface ethernet 5 disable
```

The above command disables port 5 in the running-config file, but not in the startup-config file. Port 5 remains disabled only until the switch reboots. If you want port 5 to remain disabled through the next reboot, use `write memory` to save the current running-config file to the startup-config file in flash memory.

```
ProCurve(config)# write memory
```

If you use the CLI to make a configuration change and then change from the CLI to the Menu interface without first using `write memory` to save the change to the startup-config file, then the switch prompts you to save the change. For example, if you use the CLI to create VLAN 20, and then select the menu interface, VLAN 20 is configured in the running-config file, but not in the startup-config file. In this case you will see:

```
ProCurve(config)# vlan 20
ProCurve(config)# menu
Do you want to save current configuration [y/n]?
```

If you type `[Y]`, the switch overwrites the startup-config file with the running-config file, and your configuration change(s) will be preserved across reboots. If you type `[N]`, your configuration change(s) will remain only in the running-config file. In this case, if you do not subsequently save the running-config file, your unsaved configuration changes will be lost if the switch reboots for any reason.

**Storing and Retrieving Configuration Files.** You can store or retrieve a backup copy of the startup-config file on another device. For more information, refer to appendix A, “Transferring an Operating System or Startup-Config File”
Using the CLI To Implement Configuration Changes

The CLI offers these capabilities:

- Access to the full set of switch configuration features
- The option of testing configuration changes before making them permanent

How To Use the CLI To View the Current Configuration Files. Use show commands to view the configuration for individual features, such as port status or Spanning Tree Protocol. However, to view either the entire startup-config file or the entire running-config file, use the following commands:

- show config — Displays a listing of the current startup-config file.
- show running-config — Displays a listing of the current running-config file.
- write terminal — Displays a listing of the current running-config file.
- show config status — Compares the startup-config file to the running-config file and lists one of the following results:
  - If the two configurations are the same you will see:
    - Running configuration is the same as the startup configuration.
  - If the two configurations are different, you will see:
    - Running configuration has been changed and needs to be saved.

Note Show config, show running-config, and write terminal commands display the configuration settings that differ from the switch’s factory-default configuration.

How To Use the CLI To Reconfigure Switch Features. Use this procedure to permanently change the switch configuration (that is, to enter a change in the startup-config file).

1. Use the appropriate CLI commands to reconfigure the desired switch parameters. This updates the selected parameters in the running-config file.
2. Use the appropriate show commands to verify that you have correctly made the desired changes.
3. Observe the switch’s performance with the new parameter settings to verify the effect of your changes.

4. When you are satisfied that you have the correct parameter settings, use the `write memory` command to copy the changes to the startup-config file.

**Syntax:** `write memory`  

For example, the default port mode setting is **auto**. Suppose that your network uses Cat 3 wiring and you want to connect the switch to another autosensing device capable of 100 Mbps operation. Because 100 Mbps over Cat 3 wiring can introduce transmission problems, the recommended port mode is **auto-10**, which allows the port to negotiate full- or half-duplex, but restricts speed to 10 Mbps. The following command configures port A5 to auto-10 mode in the running-config file, allowing you to observe performance on the link without making the mode change permanent.

```
ProCurve(config)# interface e a5 speed-duplex auto-10
```

After you are satisfied that the link is operating properly, you can save the change to the switch’s permanent configuration (the startup-config file) by executing the following command:

```
ProCurve(config)# write memory
```

The new mode (**auto-10**) on port A5 is now saved in the startup-config file, and the startup-config and running-config files are identical. If you subsequently reboot the switch, the **auto-10** mode configuration on port A5 will remain because it is included in the startup-config file.

**How To Cancel Changes You Have Made to the Running-Config File.**

If you use the CLI to change parameter settings in the running-config file, and then decide that you don’t want those changes to remain, you can use either of the following methods to remove them:

- Manually enter the earlier values you had for the changed settings. (This is recommended if you want to restore a small number of parameter settings to their previous boot-up values.)
- Update the running-config file to match the startup-config file by rebooting the switch. (This is recommended if you want to restore a larger number of parameter settings to their previous boot-up values.)

If you use the CLI to change a parameter setting, and then execute the `boot` command without first executing the `write memory` command to save the change, the switch prompts you to specify whether to save the changes in the current running-config file. For example:
Switch Memory and Configuration
Using the CLI To Implement Configuration Changes

The above prompt means that one or more parameter settings in the running-config file differ from their counterparts in the startup-config file and you need to choose which config file to retain and which to discard.

- If you want to update the startup-config file to match the running-config file, press [Y] for “yes”. (This means that the changes you entered in the running-config file will be saved in the startup-config file.)
- If you want to discard the changes you made to the running-config file so that it will match the startup-config file, then press [N] for “no”. (This means that the switch will discard the changes you entered in the running-config file and will update the running-config file to match the startup-config file.)

Note

If you use the CLI to make a change to the running-config file, you should either use the write memory command or select the save option allowed during a reboot (figure 6-2, above) to save the change to the startup-config file. That is, if you use the CLI to change a parameter setting, but then reboot the switch from either the CLI or the menu interface without first executing the write memory command in the CLI, the current startup-config file will replace the running-config file, and any changes in the running-config file will be lost.

Using the Save command in the menu interface does not save a change made to the running config by the CLI unless you have also made a configuration change in the menu interface. Also, the menu interface displays the current running-config values. Thus, where a parameter setting is accessible from both the CLI and the menu interface, if you change the setting in the CLI, the new value will appear in the menu interface display for that parameter. However, as indicated above, unless you also make a configuration change in the menu interface, only the write memory command in the CLI will actually save the change to the startup-config file.
**How To Reset the startup-config and running-config Files to the Factory Default Configuration.** This command reboots the switch, replacing the contents of the current startup-config and running-config files with the factory-default startup configuration.

**Syntax:** erase startup-config

For example:

```
ProCurve(config)# erase startup-config
Configuration will be deleted and device rebooted, continue [y/n]?
```

Press [Y] to replace the current configuration with the factory default configuration and reboot the switch. Press [N] to retain the current configuration and prevent a reboot.

---

**Using the Menu and Web Browser Interfaces To Implement Configuration Changes**

The menu and web browser interfaces offer these advantages:

- Quick, easy menu or window access to a subset of switch configuration features
- Viewing several related configuration parameters in the same screen, with their default and current settings
- Immediately changing both the running-config file and the startup-config file with a single command

**Menu: Implementing Configuration Changes**

You can use the menu interface to simultaneously save and implement a subset of switch configuration changes without having to reboot the switch. That is, when you save a configuration change in the menu interface, you simultaneously change both the running-config file and the startup-config file.
Switch Memory and Configuration
Using the Menu and Web Browser Interfaces To Implement Configuration Changes

The only exception to this operation are two VLAN-related parameter changes that require a reboot—described under “Rebooting To Activate Configuration Changes” on page 6-11.

Using Save and Cancel in the Menu Interface

For any configuration screen in the menu interface, the Save command:

1. Implements the changes in the running-config file
2. Saves your changes to the startup-config file

If you decide not to save and implement the changes in the screen, select Cancel to discard them and continue switch operation with the current operation. For example, suppose you have made the changes shown below in the System Information screen:

Figure 6-3. Example of Pending Configuration Changes You Can Save or Cancel

If you reconfigure a parameter in the CLI and then go to the menu interface without executing a write memory command, those changes are stored only in the running configuration (even if you execute a Save operation in the menu interface). If you then execute a switch boot command in the menu interface, the switch discards the configuration changes made while using the CLI. To ensure that changes made while using the CLI are saved, execute write memory in the CLI before rebooting the switch.
Rebooting from the Menu Interface

- Terminates the current session and performs a reset of the operating system
- Activates any configuration changes that require a reboot
- Resets statistical counters to zero

(Note that statistical counters can be reset to zero without rebooting the switch. See “To Display the Port Counter Summary Report” on page B-13.)

To Reboot the switch, use the **Reboot Switch** option in the Main Menu. (Note that the Reboot Switch option is not available if you log on in Operator mode; that is, if you enter an Operator password instead of a manager password at the password prompt.)

---

**Figure 6-4. The Reboot Switch Option in the Main Menu**

---

**Rebooting To Activate Configuration Changes.** Configuration changes for most parameters become effective as soon as you save them. However, you must reboot the switch in order to implement a change in the **Maximum VLANs to support** parameter.

(To access these parameters, go to the Main menu and select **2. Switch Configuration**, then **8. VLAN Menu**, then **1. VLAN Support**.)
If configuration changes requiring a reboot have been made, the switch displays an asterisk (*) next to the menu item in which the change has been made. For example, if you change and save parameter values for the Maximum VLANs to support parameter, an asterisk appears next to the VLAN Support entry in the VLAN Menu screen, and also next to the Switch Configuration entry in the Main menu, as shown in figure 4-6:

![Switch Configuration Menu](image)

Figure 6-5. Indication of a Configuration Change Requiring a Reboot

Web: Implementing Configuration Changes

You can use the web browser interface to simultaneously save and implement a subset of switch configuration changes without having to reboot the switch. That is, when you save a configuration change (in most cases, by clicking on [Apply Changes] or [Apply Settings], you simultaneously change both the running-config file and the startup-config file.

**Note**

If you reconfigure a parameter in the CLI and then go to the browser interface without executing a write memory command, those changes will be saved to the startup-config file if you click on [Apply Changes] or [Apply Settings] in the web browser interface.
Using Primary and Secondary Flash Image Options

The switches covered in this guide feature two flash memory locations for storing switch software image files:

- **Primary Flash**: The default storage for a switch software image.
- **Secondary Flash**: The additional storage for either a redundant or an alternate switch software image.

With the Primary/Secondary flash option you can test a new image in your system without having to replace a previously existing image. You can also use the image options for troubleshooting. For example, you can copy a problem image into Secondary flash for later analysis and place another, proven image in Primary flash to run your system. The switch can use only one image at a time.

The following tasks involve primary/secondary flash options:

- Displaying the current flash image data and determining which switch software versions are available
- Switch software downloads
- Replacing and removing (erasing) a local switch software version
- System booting

Displaying the Current Flash Image Data

Use the commands in this section to:

- Determine whether there are flash images in both primary and secondary flash
- Determine whether the images in primary and secondary flash are the same
- Identify which switch software version is currently running

**Viewing the Currently Active Flash Image Version.** This command identifies the software version on which the switch is currently running, and whether the active version was booted from the primary or secondary flash image.

**Syntax:** `show version`
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

For example, if the switch is using a software version of K.11.XX stored in Primary flash, `show version` produces the following:

```
ProCurve(config)# show version
Image stamp:       /sw/code/build/info(s01)
                   Dec 24 2005 10:50:26
                   K.11.XX
                   1796
Boot Image:       Primary
```

Figure 6-6. Example Showing the Identity of the Current Flash Image (5400zl)

**Determining Whether the Flash Images Are Different Versions.** If the flash image sizes in primary and secondary are the same, then in almost every case, the primary and secondary images are identical. This command provides a comparison of flash image sizes, plus the boot ROM version and from which flash image the switch booted. For example, in the following case, the images are different versions of the switch software, and the switch is running on the version stored in the secondary flash image:

```
ProCurve(config)# show flash
Image       Size(Bytes)  Date          Version
-----------  -----------  ------------  ---------
Primary Image: 3275389   11/05/05     K.11.30
Secondary Image: 3258128  10/25/05     K.11.20
Current Boot: Primary
```

Figure 6-7. Example Showing Different Flash Image Versions (5400zl)

**Determining Which Flash Image Versions Are Installed.** The `show version` command displays which software version the switch is currently running and whether that version booted from primary or secondary flash. Thus, if the switch booted from primary flash, you will see the version number of the software version stored in primary flash, and if the switch booted from secondary flash, you will see the version number of the software version stored in secondary flash. Thus, by using `show version`, then rebooting the switch from the opposite flash image and using `show version` again, you can determine the version(s) of switch software in both flash sources. For example:
Switch Software Downloads

The following table shows the switch’s options for downloading a software version to flash and booting the switch from flash.

Table 6-1. Primary/Secondary Memory Access

<table>
<thead>
<tr>
<th>Action</th>
<th>Menu</th>
<th>CLI</th>
<th>Web Browser</th>
<th>SNMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download to Primary</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Download to Secondary</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Boot from Primary</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Boot from Secondary</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The different software download options involve different `copy` commands, plus `xmodem`, and `tftp`. These topics are covered in appendix A, “File Transfers”.

Download Interruptions. In most cases, if a power failure or other cause interrupts a flash image download, the switch reboots with the image previously stored in primary flash. In the unlikely event that the primary image is corrupted, as a result of an interruption, the switch will reboot from secondary flash and you can either copy the secondary image into primary or download another image to primary from an external source. Refer to Appendix A, “File Transfers”.

Figure 6-8. Determining the Software Version in Primary and Secondary Flash
Local Switch Software Replacement and Removal

This section describes commands for erasing a software version and copying an existing software version between primary and secondary flash.

Note

It is not necessary to erase the content of a flash location before downloading another software file. The process automatically overwrites the previous file with the new file. If you want to remove an unwanted software version from flash, ProCurve recommends that you do so by overwriting it with the same software version that you are using to operate the switch, or with another acceptable software version. To copy a software file between the primary and secondary flash locations, refer to “Copying a Switch Software Image from One Flash Location to Another”, below.

The local commands described here are for flash image management within the switch. To download a software image file from an external source, refer to Appendix A, “File Transfers”.

Copying a Switch Software Image from One Flash Location to Another. When you copy the flash image from primary to secondary or the reverse, the switch overwrites the file in the destination location with a copy of the file from the source location. This means you do not have to erase the current image at the destination location before copying in a new image.

Caution

Verify that there is an acceptable software version in the source flash location from which you are going to copy. Use the show flash command or, if necessary, the procedure under “Determining Which Flash Image Versions Are Installed” on page 6-14 to verify an acceptable software version. Attempting to copy from a source image location that has a corrupted flash image overwrites the image in the destination flash location. In this case, the switch will not have a valid flash image in either flash location, but will continue running on a temporary flash image in RAM. Do not reboot the switch. Instead, immediately download another valid flash image to primary or secondary flash. Otherwise, if the switch is rebooted without a software image in either primary or secondary flash, the temporary flash image in RAM will be cleared and the switch will go down. To recover, refer to “Restoring a Flash Image” on page C-56 (in the “Troubleshooting” appendix).

Syntax:  
copy flash flash <destination flash>

where:  
destination flash = primary or secondary:

For example, to copy the image in secondary flash to primary flash:
1. Verify that there is a valid flash image in the secondary flash location. The following figure indicates that a software image is present in secondary flash. (If you are unsure whether the image is secondary flash is valid, try booting from it before you proceed, by using boot system flash secondary.)

![Figure 6-9. Example Indicating Two Different Software Versions in Primary and Secondary Flash](image_url)

Execute the copy command as follows:

```
ProCurve(config)# copy flash flash primary
```

**Erasing the Contents of Primary or Secondary Flash.** This command deletes the software image file from the specified flash location.

---

**Caution:**

**No Undo!**

Before using this command in one flash image location (primary or secondary), ensure that you have a valid software file in the other flash image location (secondary or primary). If the switch has only one flash image loaded (in either primary or secondary flash) and you erase that image, then the switch does not have a software image stored in flash. In this case, if you do not reboot or power cycle the switch, you can recover by using xmodem or tftp to download another software image.

**Syntax:** erase flash < primary | secondary >

For example, to erase the software image in primary flash, do the following:

1. First verify that a usable flash image exists in secondary flash. The most reliable way to ensure this is to reboot the switch from the flash image you want to retain. For example, if you are planning to erase the primary image, then first reboot from the secondary image to verify that the secondary image is present and acceptable for your system:

   ```
   ProCurve# boot system flash secondary
   ```

2. Then erase the software image in the selected flash (in this case, primary):
Switch Memory and Configuration  
Using Primary and Secondary Flash Image Options

ProCurve# erase flash primary  
The Primary OS Image will be deleted, continue [y/n]?

Figure 6-10. Example of Erase Flash Prompt

3. Type \texttt{y} at the prompt to complete the flash erase.

4. Use \texttt{show flash} to verify erasure of the selected software flash image

Figure 6-11. Example of Show Flash Listing After Erasing Primary Flash

Rebooting the Switch

The switch offers reboot options through the \texttt{boot} and \texttt{reload} commands, plus the options inherent in a dual-flash image system. Generally, using \texttt{boot} provides more comprehensive self-testing; using \texttt{reload} gives you a faster reboot time.

<table>
<thead>
<tr>
<th>Actions</th>
<th>Included In Boot?</th>
<th>Included In Reload</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save all configuration changes since the last boot or reload</td>
<td>Optional, with prompt</td>
<td>Yes, automatic</td>
<td>Config changes saved to the startup-config file</td>
</tr>
<tr>
<td>Perform all system self-tests</td>
<td>Yes</td>
<td>No</td>
<td>Reload provides a faster system reboot.</td>
</tr>
<tr>
<td>Choice of primary or secondary</td>
<td>Yes</td>
<td>No</td>
<td>No—Uses the current flash image.</td>
</tr>
</tbody>
</table>

Table 6-2. Comparing the Boot and Reload Commands
**Booting from Primary Flash.** This command always boots the switch from primary flash, executes the complete set of subsystem self-tests, and gives you the option of saving or discarding any configuration changes in the running-config file.

**Syntax:** boot

For example, to boot the switch from primary flash with pending configuration changes in the running-config file:

```
ProCurve(config)# boot
Device will be rebooted, do you want to continue [y/n]? y
Boot from primary flash
Do you want to save current configuration [y/n]? _
```

**Figure 6-12. Example of Boot Command (Default Primary Flash)**

In the above example, typing either a `y` or `n` at the second prompt initiates the reboot operation. (Entering `y` saves any configuration changes from the running-config file to the startup-config file; entering `n` discards them.) Also, if there are no pending configuration changes in the running-config file, then the reboot commences without the pause to display *Boot from primary flash*.

**Booting from a Specified Flash.** This version of the boot command gives you the option of specifying whether to reboot from primary or secondary flash, and is the required command for rebooting from secondary flash. This option also executes the complete set of subsystem self-tests.

**Syntax:** boot system flash < primary | secondary >

For example, to reboot the switch from secondary flash when there are no pending configuration changes in the running-config file:

```
ProCurve(config)# boot system flash secondary
Device will be rebooted, do you want to continue [y/n]? y
Boot from secondary flash
Do you want to save current configuration [y/n]? _
```

**Figure 6-13. Example of Boot Command with Primary/Secondary Flash Option**

In the above example, typing either a `y` or `n` at the second prompt initiates the reboot operation. Also, if there are no pending configuration changes in the running-config file, then the reboot commences without the pause to display *Boot from secondary flash.*
Using the Fastboot feature. The fastboot command allows a boot sequence that skips the internal power-on self-tests, resulting in a faster boot time.

Syntax:  [no] fastboot

Enables the fastboot option
[no]: disables the feature.

Syntax:  show fastboot

Shows the status of the fastboot feature, either enabled or disabled.

The fastboot command is shown below.

ProCurve(config)# fastboot

Rebooting from the Current Software Version. Reload reboots the switch from the flash image and startup-config file on which the switch is currently running, and provides the option for saving to the startup-config file any configuration changes currently in the running-config file. Because reload bypasses some subsystem self-tests, the switch reboots faster than if you use either of the boot command options.

Syntax:  reload

For example, if you change the number of VLANs the switch supports, you must reboot the switch in order to implement the change. Reload automatically saves your configuration changes and reboots the switch from the same software image you have been using:

```
ProCurve(config)# max-vlans 12
Command will take effect after saving configuration and reboot.
ProCurve(config)# reload
Device will be rebooted, do you want to continue [y/n]? y
Do you want to save current configuration [y/n]? _
```

Figure 6-14. Using Reload with Pending Configuration Changes
Operating Notes

Default Boot Source. The switch reboots from primary flash by default unless you specify the secondary flash.

Boot Attempts from an Empty Flash Location. In this case, the switch aborts the attempt and displays

    Image does not exist
    Operation aborted.

Interaction of Primary and Secondary Flash Images with the Current Configuration. The switch has one startup-config file (page 6-3), which it always uses for reboots, regardless of whether the reboot is from primary or secondary flash. Also, for rebooting purposes, it is not necessary for the software image and the startup-config file to support identical software features. For example, suppose you have just downloaded a software upgrade that includes new features that are not supported in the software you used to create the current startup-config file. In this case, the software simply assigns factory-default values to the parameters controlling the new features. Similarly, if you create a startup-config file while using a version “Y” of the switch software, and then reboot the switch with an earlier software version “X” that does not include all of the features found in “Y”, the software simply ignores the parameters for any features that it does not support.
Multiple Configuration Files

This method of operation means that you cannot preserve different startup-config files across a reboot without using remote storage.

The switch allows up to three startup-config files with options for selecting which startup-config file to use for:

- A fixed reboot policy using a specific startup-config file for a specific boot path (primary or secondary flash)
- Overriding the current reboot policy on a per-instance basis

While you can still use remote storage for startup-config files, you can now maintain multiple startup-config files on the switch and choose which version to use for a reboot policy or an individual reboot.

This choice of which configuration file to use for the startup-config at reboot provides the following new options:

- The switch can reboot with different configuration options without having to exchange one configuration file for another from a remote storage location.
Switch Memory and Configuration
Multiple Configuration Files

- Transitions from one software release to another can be performed while maintaining a separate configuration for the different software release versions.
- By setting a reboot policy using a known good configuration and then overriding the policy on a per-instance basis, you can test a new configuration with the provision that if an unattended reboot occurs, the switch will come up with the known, good configuration instead of repeating a reboot with a misconfiguration.

General Operation

Multiple Configuration Storage in the Switch. The switch uses three memory “slots”, with identity (id) numbers of 1, 2, and 3.

<table>
<thead>
<tr>
<th>Memory Slots for Different Startup-Config Files</th>
<th>ProCurve(config)# show config files</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuration files:</td>
</tr>
<tr>
<td></td>
<td>id</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

A startup-config file stored in a memory slot has a unique, changeable file name. The switches covered in this guide can use the startup-config in any of the memory slots (if the software version supports the configured features).

Boot Options. With multiple startup-config files in the switch you can specify a policy for the switch to use upon reboot. The options include:
- Use the designated startup-config file with either or both reboot paths (primary or secondary flash)
- Override the current reboot policy for one reboot instance by specifying a boot path (primary or secondary flash) and the startup-config file to use.

Changing the Startup-Config File. When the switch reboots, the startup-config file supplies the configuration for the running-config file the switch uses to operate. Making changes to the running-config file and then executing a write-mem command (or, in the Menu interface, the Save command) are written back to the startup-config file used at the last reboot. For example, suppose that a system administrator performs the following on a switch that has two startup-config files (workingConfig and backupConfig):

1. Reboot the switch through the Primary boot path using the startup-config file named backupConfig.
2. Use the CLI to make configuration changes in the running-config file, and then execute `write mem`.

The result is that the startup-config file used to reboot the switch is modified by the actions in step 2.

![Diagram of Reboot Process and Making Changes to the Startup-Config File](image)

**Figure 6-16. Example of Reboot Process and Making Changes to the Startup-Config File**

**Creating an Alternate Startup-Config File.** There are two methods for creating a new configuration file:

- Copy an existing startup-config file to a new filename, then reboot the switch, make the desired changes to the running-config file, then execute `write memory`. (Refer to figure 6-16, above.)

- Erase the active startup-config file. This generates a new, default startup-config file that always results when the switch automatically reboots after deletion of the currently active startup-config file. (Refer to “Erasing a Startup-Config File” on page 6-32.)
Transitioning to Multiple Configuration Files

At the first reboot with a software release supporting multiple configuration, the switch:
- Assigns the filename `oldConfig` to the existing startup-config file (which is stored in memory slot 1).
- Saves a copy of the existing startup-config file in memory slot 2 with the filename `workingConfig`.
- Assigns the `workingConfig` file as the active configuration and the default configuration for all subsequent reboots using either primary or secondary flash.

![ProCurve(config)# show config files](image)

<table>
<thead>
<tr>
<th>id</th>
<th>act</th>
<th>pri</th>
<th>sec</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>oldConfig</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>*</td>
<td>*</td>
<td>workingConfig</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figure 6-17. Switch Memory Assignments After the First Reboot from Software Supporting Multiple Configuration**

In the above state, the switch always:
- Uses the `workingConfig` file to reboot

The commands described later in this section enable you to view the current multiple configuration status, manage multiple startup-config files, configure reboot policies, and override reboot policies on a per-instance basis.
Listing and Displaying Startup-Config Files

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show config files</td>
<td>Below</td>
</tr>
<tr>
<td>show config &lt; filename &gt;</td>
<td>6-27</td>
</tr>
</tbody>
</table>

Viewing the Startup-Config File Status with Multiple Configuration Enabled

Rebooting the switch automatically enables the multiple configuration feature.

**Syntax:** show config files

*This command displays the available startup-config files on the switch and the current use of each file.*

- **id:** Identifies the memory slot for each startup-config file available on the switch.
- **act:** An asterisk ( * ) in this column indicates that the corresponding startup-config file is currently in use.
- **pri:** An asterisk ( * ) in this column indicates that the corresponding startup-config file is currently assigned to the primary boot path.
- **sec:** An asterisk ( * ) in this column indicates that the corresponding startup-config file is currently assigned to the secondary boot path.
- **name:** Shows the filename for each listed startup-config file in the switch. Refer to “Renaming an Existing Startup-Config File” on page 6-30 for the command you can use to change existing startup-config filenames.

In the default configuration, if the switch was shipped from the factory with software installed in both the primary and secondary boot paths, then one startup-config file named **config1** is used for both paths and is stored in memory slot 1. Memory slots 2 and 3 are empty in this default configuration.
Switch Memory and Configuration
Multiple Configuration Files

Displaying the Content of A Specific Startup-Config File

With Multiple Configuration enabled, the switch can have up to three startup-config files. Because the `show config` command always displays the content of the currently active startup-config file, the command extension shown below is needed to allow viewing the contents of any other startup-config files stored in the switch.

**Syntax:**  
`show config < filename >`  

*This command displays the content of the specified startup-config file in the same way that the `show config` command displays the content of the default (currently active) startup-config file.*

Changing or Overriding the Reboot Configuration Policy

---

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>startup-default [ primary</td>
<td>secondary ] config &lt; filename &gt;</td>
</tr>
<tr>
<td>boot system flash &lt; primary</td>
<td>secondary &gt; config &lt; filename &gt;</td>
</tr>
</tbody>
</table>

You can boot the switch using any available startup-config file.

**Changing the Reboot Configuration Policy.** For a given reboot, the switch automatically reboots from the startup-config file assigned to the flash location (primary or secondary) being used for the current reboot. For example, when you first download a software version that supports multiple configuration files and boot from the flash location of this version, the switch copies the existing startup-config file (named `oldConfig`) into memory slot 2, renames this file to `workingConfig`, and assigns `workingConfig` as:

- The active configuration file
- The configuration file to use when booting from either primary or secondary flash.

In this case, the switch is configured to automatically use the `workingConfig` file in memory slot 2 for all reboots.

You can use the following command to change the current policy so that the switch automatically boots using a different startup-config file.
Switch Memory and Configuration
Multiple Configuration Files

Syntax:  startup-default [ primary | secondary ] config < filename >

Specifies a boot configuration policy option:

[ primary | secondary ] config < filename >: Designates the startup-config file to use in a reboot with the software version stored in a specific flash location. Use this option to change the reboot policy for either primary or secondary flash, or both.

cfg config < filename >: Designates the startup-config file to use for all reboots, regardless of the flash version used. Use this option when you want to automatically use the same startup-config file for all reboots, regardless of the flash source used.

Note: To override the current reboot configuration policy for a single reboot instance, use the boot system flash command with the options described under “Overriding the Default Reboot Configuration Policy” on page 6-29.

For example, suppose:

- Software release “A” is stored in primary flash and a later software release is stored in secondary flash.

- The system operator is using memory slot 1 for a reliable, minimal configuration (named minconfig) for the software version in the primary flash, and slot 2 for a modified startup-config file (named newconfig) that includes untested changes for improved network operation with the software version in secondary flash.

The operator wants to ensure that in case of a need to reboot by pressing the Reset button, or if a power failure occurs, the switch will automatically reboot with the minimal startup-config file in memory slot 1. Since a reboot due to pressing the Reset button or to a power cycle always uses the software version in primary flash, the operator needs to configure the switch to always boot from primary flash with the startup-config file named minconfig (in memory slot 1). Also, whenever the switch boots from secondary flash, the operator also wants the startup-config named newconfig to be used. The following two commands configure the desired behavior.

ProCurve(config)# startup-default pri config minconfig
ProCurve(config) # startup-default sec config newconfig.
Overriding the Default Reboot Configuration Policy. This command provides a method for manually rebooting with a specific startup-config file other than the file specified in the default reboot configuration policy.

**Syntax:** boot system flash < primary | secondary > config < filename >

*Specifies the name of the startup-config file to apply for the immediate boot instance only. This command overrides the current reboot policy.*

Using Reload To Reboot From the Current Flash Image and Startup-Config File.

**Syntax:** reload

*This command boots the switch from the currently active flash image and startup-config file. Because reload bypasses some subsystem self-tests, the switch boots faster than if you use a boot command.*

**Note:** To identify the currently active startup-config file, use the *show config files* command. For an example, refer to “Rebooting from the Current Software Version” on page 6-20.

Managing Startup-Config Files in the Switch

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>rename config &lt; current-filename &gt; &lt; newname-str&gt;</td>
<td>6-30</td>
</tr>
<tr>
<td>copy config &lt; source-filename &gt; config &lt; dest-filename &gt;</td>
<td>6-30</td>
</tr>
<tr>
<td>erase config &lt; filename &gt;</td>
<td>6-32</td>
</tr>
<tr>
<td>Erase startup-config using the front-panel Clear + Reset Buttons</td>
<td>6-33</td>
</tr>
</tbody>
</table>
Switch Memory and Configuration

Multiple Configuration Files

Renaming an Existing Startup-Config File

**Syntax:** rename config < current-filename > < newname-str >

This command changes the name of an existing startup-config file. A file name can include up to 63, alphanumeric characters. Blanks are allowed in a file name enclosed in quotes (‘‘ or ‘’). (File names are not case-sensitive.)

Creating a New Startup-Config File

The switch allows up to three startup-config files. You can create a new startup-config file if there is an empty memory slot or if you want to replace one startup-config file with another.

**Syntax:** copy config < source-filename > config < target-filename >

This command makes a local copy of an existing startup-config file by copying the contents of an existing startup-config file in one memory slot to a new startup-config file in another, empty memory slot. This enables you to use a separate configuration file to experiment with configuration changes, while preserving the source file unchanged. It also simplifies a transition from one software version to another by enabling you to preserve the startup-config file for the earlier software version while creating a separate startup-config file for the later software version. With two such versions in place, you can easily reboot the switch with the correct startup-config file for either software version.

- If the destination startup-config file already exists, it is overwritten by the content of the source startup-config file.
- If the destination startup-config file does not already exist, it will be created in the first empty configuration memory slot on the switch.
- If the destination startup-config file does not already exist, but there are no empty configuration memory slots on the switch, then a new startup-config file is not created and instead, the CLI displays the following error message:

   **Unable to copy configuration to “< target-filename >”**.

For example, suppose both primary and secondary flash memory contain software release “A” and use a startup-config file named `config1`: 
If you wanted to experiment with configuration changes to the software version in secondary flash, you could create and assign a separate startup-config file for this purpose.

```
ProCurve(config)# copy config config1 config config2
ProCurve(config)# startup-default secondary config config2
ProCurve(config)# show config files
```

```
Configuration files:

<table>
<thead>
<tr>
<th>id</th>
<th>act</th>
<th>pri</th>
<th>sec</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>config1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>config2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Figure 6-19. Example of Creating and Assigning a New Startup-Config File**

**Note**

You can also generate a new startup-config file by booting the switch from a flash memory location from which you have erased the currently assigned startup-config file. Refer to “Erasing a Startup-Config File” in the next section.
Erasing a Startup-Config File

You can erase any of the startup-config files in the switch’s memory slots. In some cases, erasing a file causes the switch to generate a new, default-configuration file for the affected memory slot.

**Syntax:**  
erase < config < filename >> | startup-config >

- **config < filename >:** This option erases the specified startup-config file. If the specified file is not the currently active startup-config file, then the file is simply deleted from the memory slot it occupies. If the specified file is the currently active startup-config file, then the switch creates a new, default startup-config file with the same name as the erased file, and boots using this file. (This new startup-config file contains only the default configuration for the software version used in the reboot.)

  **Note:** Where a file is assigned to either the primary or the secondary flash, but is not the currently active startup-config file, erasing the file does not remove the flash assignment from the memory slot for that file. Thus, if the switch boots using a flash location that does not have an assigned startup-config, then the switch creates a new, default startup-config file and uses this file in the reboot. (This new startup-config file contains only the default configuration for the software version used in the reboot.)

  Executing write memory after the reboot causes a switch-generated filename of configx to appear in the show config files display for the new file, where x corresponds to the memory slot number.

- **startup-config:** This option erases the currently active startup-config file and reboots the switch from the currently active flash memory location. The erased startup-config file is replaced with a new startup-config file. The new file has the same filename as the erased file, but contains only the default configuration for the software version in the flash location (primary or secondary) used for the reboot. For example, suppose the last reboot was from primary flash using a configuration file named minconfig. Executing erase startup-config replaces the current content of minconfig with a default configuration and reboots the switch from primary flash.
Figure 6-20 illustrates using **erase config <filename>** to remove a startup-config file.

![Figure 6-20. Example of Erasing a Non-Active Startup-Config File](image)

With the same memory configuration as is shown in the bottom portion of figure 6-20, executing **erase startup-config** boots the switch from primary flash, resulting in a new file named minconfig in the same memory slot. The new file contains the default configuration for the software version currently in primary flash.

**Using the Clear + Reset Button Combination To Reset the Switch to Its Default Configuration**

The Clear + Reset button combination described in the *Installation and Getting Started Guide* produces these results. That is, when you press the Clear + Reset button combination, the switch:

- Overwrites the content of the startup-config file currently in memory slot 1 with the default configuration for the software version in primary flash, and renames this file to **config1**.
- Erases any other startup-config files currently in memory.
- Configures the new file in memory slot 1 as the default for both primary and secondary flash locations (regardless of the software version currently in secondary flash).
- Boots the switch from primary flash using the new startup-config file.
### Pressing Clear + Reset:
- Replaces all startup-config files with a single file named `config1` that contains the default configuration for the software version in primary flash.
- Resets the Active, Primary, and Secondary assignments as shown here.

#### Figure 6-21. Example of Clear + Reset Result

<table>
<thead>
<tr>
<th>id</th>
<th>act</th>
<th>pri</th>
<th>sec</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>config1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transferring Startup-Config Files To or From a Remote Server

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy config <code>&lt; src-file &gt; tftp </code>&lt; ip-addr &gt; <code>&lt; remote-file &gt; </code>&lt; pc</td>
<td>unix &gt;</td>
</tr>
<tr>
<td>copy tftp config <code>&lt; dest-file &gt; </code>&lt; ip-addr &gt; <code>&lt; remote-file &gt; </code>&lt; pc</td>
<td>unix &gt;</td>
</tr>
<tr>
<td>copy config <code>&lt; src-file &gt; xmodem </code>&lt; pc</td>
<td>unix &gt;</td>
</tr>
<tr>
<td>copy xmodem config <code>&lt; dest-file &gt; </code>&lt; pc</td>
<td>unix &gt;</td>
</tr>
</tbody>
</table>

TFTP: Copying a Configuration File to a Remote Host

**Syntax:**

```
copy config `< src-file > tftp `< ip-addr > `< remote-file > `< pc | unix >
```

This is an addition to the copy tftp command options. Use this command to upload a configuration file from the switch to a TFTP server.

For more on using TFTP to copy a file to a remote server, refer to “TFTP: Copying a Configuration File to a Remote Host” on page A-22.

For example, the following command copies a startup-config file named **test-01** from the switch to a (UNIX) TFTP server at IP address 10.10.28.14:

```
ProCurve(config)# copy config test-01 tftp 10.10.28.14 test-01.txt unix
```

TFTP: Copying a Configuration File from a Remote Host

**Syntax:**

```
copy tftp config `< dest-file > `< ip-addr > `< remote-file > `< pc | unix >
```

This is an addition to the copy tftp command options. Use this command to download a configuration file from a TFTP server to the switch.

Note: This command requires an empty memory slot in the switch. If there are no empty memory slots, the CLI displays the following message:

**Unable to copy configuration to "> filename >".**

For more on using TFTP to copy a file from a remote host, refer to “TFTP: Copying a Configuration from a Remote Host” on page A-22.
For example, the following command copies a startup-config file named test-01.txt from a (UNIX) TFTP server at IP address 10.10.28.14 to the first empty memory slot in the switch:

ProCurve(config)# copy tftp config test-01 10.10.28.14 test-01.txt unix

Xmodem: Copying a Configuration File to a Serially Connected Host

**Syntax:**  
```
copy config < filename > xmodem < pc | unix >
```

*This is an addition to the copy < config > xmodem command options. Use this command to upload a configuration file from the switch to an Xmodem host.*

*For more on using Xmodem to copy a file to a serially connected host, refer to “Xmodem: Copying a Configuration File from the Switch to a Serially Connected PC or UNIX Workstation” on page A-25.*

Xmodem: Copying a Configuration from a Serially Connected Host

**Syntax:**  
```
copy xmodem config < dest-file > < pc | unix >
```

*This is an addition to the copy xmodem command options. Use this command to download a configuration file from an Xmodem host to the switch.*

*For more on using Xmodem to copy a file from a serially connected host, refer to “Xmodem: Copying a Configuration File from a Serially Connected PC or UNIX Workstation” on page A-25.*

Operating Notes for Multiple Configuration Files

- SFTP/SCP: The configuration files are available for sftp/scp transfer as /ctg/< filename >.
Interface Access and System Information

Contents

Overview ................................................................. 7-2
Interface Access: Console/Serial Link, Web, and Inbound Telnet . 7-3
  Menu: Modifying the Interface Access .......................... 7-4
  CLI: Modifying the Interface Access ............................ 7-5
Denying Interface Access by Terminating Remote Management
  Sessions ............................................................. 7-9
System Information .................................................... 7-10
  Menu: Viewing and Configuring System Information ........ 7-11
  CLI: Viewing and Configuring System Information .......... 7-12
  Web: Configuring System Parameters ......................... 7-15
Overview

This chapter describes how to:

- View and modify the configuration for switch interface access
- Use the CLI `kill` command to terminate a remote session
- View and modify switch system information

For help on how to actually use the interfaces built into the switch, refer to:

- Chapter 3, “Using the Menu Interface”
- Chapter 4, “Using the Command Line Interface (CLI)”
- Chapter 5, Using the ProCurve Web Browser Interface”

**Why Configure Interface Access and System Information?** The interface access features in the switch operate properly by default. However, you can modify or disable access features to suit your particular needs. Similarly, you can choose to leave the system information parameters at their default settings. However, modifying these parameters can help you to more easily distinguish one device from another in your network.
Interface Access and System Information
Interface Access: Console/Serial Link, Web, and Inbound Telnet

Interface Access: Console/Serial Link, Web, and Inbound Telnet

Interface Access Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivity Time</td>
<td>0 Minutes (disabled)</td>
<td>page 7-4</td>
<td>page 7-6</td>
<td>—</td>
</tr>
<tr>
<td>Inbound Telnet Access</td>
<td>Enabled</td>
<td>page 7-4</td>
<td>page 7-5</td>
<td>—</td>
</tr>
<tr>
<td>Outbound Telnet Access</td>
<td>n/a</td>
<td>—</td>
<td>page 7-6</td>
<td>—</td>
</tr>
<tr>
<td>Web Browser Interface Access</td>
<td>Enabled</td>
<td>page 7-4</td>
<td>page 7-6</td>
<td>—</td>
</tr>
<tr>
<td>Terminal type</td>
<td>VT-100</td>
<td>—</td>
<td>page 7-6</td>
<td>—</td>
</tr>
<tr>
<td>Event Log event types to list</td>
<td>All</td>
<td>—</td>
<td>page 7-6</td>
<td>—</td>
</tr>
<tr>
<td>(Displayed Events)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate</td>
<td>Speed Sense</td>
<td>—</td>
<td>page 7-6</td>
<td>—</td>
</tr>
<tr>
<td>Flow Control</td>
<td>XON/XOFF</td>
<td>—</td>
<td>page 7-6</td>
<td>—</td>
</tr>
</tbody>
</table>

In most cases, the default configuration is acceptable for standard operation.

**Note**

Basic switch security is through passwords. You can gain additional security by using the security features described in the Access Security Guide for your switch. You can also simply block unauthorized access via the web browser interface or Telnet (as described in this section) and installing the switch in a locked environment.
Menu: Modifying the Interface Access

The menu interface enables you to modify these parameters:
- Inactivity Timeout
- Inbound Telnet Enabled
- Web Agent Enabled

To Access the Interface Access Parameters:

1. From the Main Menu, Select...
2. Switch Configuration...
   1. System Information

Figure 7-1. The Default Interface Access Parameters Available in the Menu Interface

1. Press [E] (for Edit). The cursor moves to the System Name field.
2. Use the arrow keys (↑, ↓, ←, →) to move to the parameters you want to change.

   Refer to the online help provided with this screen for further information on configuration options for these features.
3. When you have finished making changes to the above parameters, press [Enter], then press [S] (for Save).
CLI: Modifying the Interface Access

**Interface Access Commands Used in This Section**

<table>
<thead>
<tr>
<th>Command</th>
<th>Page Referenced</th>
</tr>
</thead>
<tbody>
<tr>
<td>show console</td>
<td>below</td>
</tr>
<tr>
<td>[no] telnet-server</td>
<td>below</td>
</tr>
<tr>
<td>[no] web-management</td>
<td>page 7-6</td>
</tr>
<tr>
<td>console</td>
<td>page 7-6</td>
</tr>
</tbody>
</table>

**Listing the Current Console/Serial Link Configuration.** This command lists the current interface access parameter settings.

**Syntax:** `show console`

This example shows the switch’s default console/serial configuration.

```
ProCurve> show console
Console/Serial Link...
  Inbound Telnet Enabled : Yes
  Web Agent Enabled : Yes
  Terminal Type : VT100
  Screen Refresh Interval (sec) : 3
  Displayed Events : All
  Baud Rate : speed-sense
  Flow Control : XON/XOFF
  Session Inactivity Time (min) : 0
```

**Figure 7-2. Listing of Show Console Command**

**Reconfigure Inbound Telnet Access.** In the default configuration, inbound Telnet access is enabled.

**Syntax:** `[no] telnet-server`

To disable inbound Telnet access:

```
ProCurve(config)# no telnet-server
```

To re-enable inbound Telnet access:

```
ProCurve(config)# telnet-server
```
Outbound Telnet to Another Device. This feature operates independently of the telnet-server status and enables you to Telnet to another device that has an IP address.

**Syntax:** telnet < ip-address >

For example:

ProCurve # telnet 10.28.27.204

Reconfigure Web Browser Access. In the default configuration, web browser access is enabled.

**Syntax:** [no] web-management

To disable web browser access:

ProCurve(config)# no web-management

To re-enable web browser access:

ProCurve(config)# web-management

Reconfigure the Console/Serial Link Settings. You can reconfigure one or more console parameters with one console command.

**Syntax:** console

[terminal < vt100 | ansi | none >]
[screen-refresh < 1 | 3 | 5 | 10 | 20 | 30 | 45 | 60 >]
[baud-rate
  < speed-sense | 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 1155200 >]
[ flow-control < xon/xoff | none >]
[inactivity-timer < 0 | 1 | 5 | 10 | 15 | 20 | 30 | 60 |120 >]
[events <none | all | non-info | critical | debug]
[local-terminal <vt 100 | none | ansi>]

If you change the Baud Rate or Flow Control settings for the switch, you should make the corresponding changes in your console access device. Otherwise, you may lose connectivity between the switch and your terminal emulator due to differences between the terminal and switch settings for these two parameters.

All console parameter changes except events require that you save the configuration with write memory and then execute boot before the new console configuration will take effect.

For example, to use one command to configure the switch with the following:

- VT100 operation
- 19,200 baud
- No flow control
- 10-minute inactivity time
- Critical log events

you would use the following command sequence:

```
ProCurve(config)# console terminal vt100 baud-rate 19200 flow-control none inactivity-timer 10 events critical
Command will take effect after saving configuration and reboot.
ProCurve(config)# write memory
ProCurve(config)# reload
```

The switch implements the Event Log change immediately. The switch implements the other console changes after executing write memory and reload.

Figure 7-3. Example of Executing the Console Command with Multiple Parameters
You can also execute a series of console commands and then save the configuration and boot the switch. For example:

```
ProCurve(config)# console baud-rate speed-sense
Command will take effect after saving configuration and reboot
ProCurve(config)# console flow-control xon/xoff
Command will take effect after saving configuration and reboot
ProCurve(config)# console inactivity-timer 0
Command will take effect after saving configuration and reboot
ProCurve(config)# write memory
ProCurve(config)# reload
```

**Figure 7-4. Example of Executing a Series of Console Commands**
Denying Interface Access by Terminating Remote Management Sessions

The switch supports up to four management sessions. You can use `show ip ssh` to list the current management sessions, and `kill` to terminate a currently running remote session. (*Kill* does not terminate a Console session on the serial port, either through a direct connection or via a modem.)

**Syntax:** `kill [< session-number >]`

For example, if you are using the switch’s serial port for a console session and want to terminate a currently active Telnet session, you would do the following:

```plaintext
ProCurve(config)# show ip ssh
SSH Enabled : Yes
IP Port Number : 22
Timeout (sec) : 120
Server Key Size (bits) : 512

<table>
<thead>
<tr>
<th>Ses Type</th>
<th>Source IP and Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>console</td>
</tr>
<tr>
<td>2</td>
<td>telnet</td>
</tr>
<tr>
<td>3</td>
<td>ssh 15.30.252.195:1531</td>
</tr>
<tr>
<td>4</td>
<td>inactive</td>
</tr>
</tbody>
</table>
```

```
ProCurve(config)# kill 2
```

```plaintext
ProCurve(config)# show ip ssh
SSH Enabled : Yes
IP Port Number : 22
Timeout (sec) : 120
Server Key Size (bits) : 512

<table>
<thead>
<tr>
<th>Ses Type</th>
<th>Source IP and Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>console</td>
</tr>
<tr>
<td>2</td>
<td>inactive</td>
</tr>
<tr>
<td>3</td>
<td>ssh 15.30.252.195:1531</td>
</tr>
<tr>
<td>4</td>
<td>inactive</td>
</tr>
</tbody>
</table>
```

Figure 7-5. Example of Using the “Kill” Command To Terminate a Remote Session
System Information

System Information Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name</td>
<td>switch product name</td>
<td>page</td>
<td>page</td>
<td>page</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-11</td>
<td>7-13</td>
<td>7-15</td>
</tr>
<tr>
<td>System Contact</td>
<td>n/a</td>
<td>page</td>
<td>page</td>
<td>page</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-11</td>
<td>7-13</td>
<td>7-15</td>
</tr>
<tr>
<td>System Location</td>
<td>n/a</td>
<td>page</td>
<td>page</td>
<td>page</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-11</td>
<td>7-13</td>
<td>7-15</td>
</tr>
<tr>
<td>MAC Age Time</td>
<td>300 seconds</td>
<td>page</td>
<td>page</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-11</td>
<td>7-14</td>
<td></td>
</tr>
<tr>
<td>Time Sync Method</td>
<td>None</td>
<td></td>
<td>See Chapter 9, “Time Protocols”</td>
<td></td>
</tr>
<tr>
<td>Time Zone</td>
<td>0</td>
<td>page</td>
<td>page</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-11</td>
<td>7-14</td>
<td></td>
</tr>
<tr>
<td>Daylight Time Rule</td>
<td>None</td>
<td>page</td>
<td>page</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-11</td>
<td>7-14</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>January 1, 1990 at 00:00:00 at last power reset</td>
<td>—</td>
<td>page</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-14</td>
<td></td>
</tr>
</tbody>
</table>

Configuring system information is optional, but recommended.

**System Name**: Using a unique name helps you to identify individual devices where you are using an SNMP network management tool such as ProCurve Manager.

**System Contact and Location**: This information is helpful for identifying the person administratively responsible for the switch and for identifying the locations of individual switches.

**MAC Age Time**: The number of seconds a MAC address the switch has learned remains in the switch’s address table before being aged out (deleted). Aging out occurs when there has been no traffic from the device belonging to that MAC address for the configured interval.

**Time Sync Method**: Selects the method (TimeP or SNTP) the switch will use for time synchronization. For more on this topic, refer to Chapter 9, “Time Protocols”.
**Time Zone:** The number of minutes your time zone location is to the West (+) or East (-) of Coordinated Universal Time (formerly GMT). The default 0 means no time zone is configured. For example, the time zone for Berlin, Germany is + 60 (minutes) and the time zone for Vancouver, Canada is - 480 (minutes).

**Daylight Time Rule:** Specifies the daylight savings time rule to apply for your location. The default is **None**. (For more on this topic, refer to appendix D, “Daylight Savings Time on ProCurve Switches.”)

**Time:** Used in the CLI to specify the time of day, the date, and other system parameters.

### Menu: Viewing and Configuring System Information

To access the system information parameters:

1. From the Main Menu, Select...

2. **Switch Configuration**...

   1. **System Information**

---

**Figure 7-6. The System Information Configuration Screen (Default Values)**

**Note**

To help simplify administration, it is recommended that you configure **System Name** to a character string that is meaningful within your system.
2. Press [E] (for Edit). The cursor moves to the **System Name** field.

3. Refer to the online help provided with this screen for further information on configuration options for these features.

4. When you have finished making changes to the above parameters, press [Enter], then press [S] (for **Save**) and return to the Main Menu.

**CLI: Viewing and Configuring System Information**

**System Information Commands Used in This Section**

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show system-information</td>
<td></td>
</tr>
<tr>
<td>hostname</td>
<td></td>
</tr>
<tr>
<td>snmp-server</td>
<td></td>
</tr>
<tr>
<td>[contact] [location]</td>
<td></td>
</tr>
<tr>
<td>mac-age-time</td>
<td>7-14</td>
</tr>
<tr>
<td>time</td>
<td></td>
</tr>
<tr>
<td>timezone</td>
<td>7-14</td>
</tr>
<tr>
<td>daylight-time-rule</td>
<td>7-14</td>
</tr>
<tr>
<td>date</td>
<td>7-14</td>
</tr>
<tr>
<td>time</td>
<td></td>
</tr>
</tbody>
</table>

**Listing the Current System Information.** This command lists the current system information settings.

**Syntax:** `show system-information`

This example shows the switch’s default console configuration.

```
ProCurve> show system-information
Status and Counters - General System Information
  System Name : ProCurve
  System Contact :
  System Location :
  M&C Age Time (sec) : 300
  Time Zone : 0
  Daylight Time Rule : None
```

**Figure 7-7. Example of CLI System Information Listing**
Configure a System Name, Contact, and Location for the Switch. To help distinguish one switch from another, configure a plain-language identity for the switch.

Syntax:  hostname < name-string >
          snmp-server [contact < system-contact >] [location < system-location >]

Both fields allow up to 48 characters. Blank spaces are not allowed in the variables for these commands.

For example, to name the switch “Blue” with “Next-4474” as the system contact, and “North-Data-Room” as the location:

```plaintext
ProCurve(config)# hostname Blue
Blue(config)# snmp-server contact Ext-4474 location North-Data-Room
Blue(config)# show system-information

Status and Counters - General System Information

| System Name      : Blue       |
| System Contact   : Ext-4474   |
| System Location  : North-Data-Room |
| MAC Age Time (sec): 300       |
| Time Zone        : 0          |
| Daylight Time Rule: None      |
| Firmware revision: E.08.30    |
| ROM Version      : E.05.04    |
| Base MAC Addr    : 0001e7-a0ec00 |
| Serial Number    : 8000394041   |
| Memory - Total   : 25,038,312 |
| Free             : 20,087,448  |
| Packet - Total   : 832        |
| Buffers Free     : 783        |
| Lowest           : 768        |
```

Figure 7-8. System Information Listing After Executing the Preceding Commands
Reconfigure the MAC Age Time for Learned MAC Addresses. This command corresponds to the MAC Age Interval in the menu interface, and is expressed in seconds.

**Syntax:** `mac-age-time < 10 - 1000000 > (seconds)`

For example, to configure the age time to seven minutes:

```
ProCurve(config)# mac-age-time 420
```

Configure the Time Zone and Daylight Time Rule. These commands:

- Set the time zone you want to use
- Define the daylight time rule for keeping the correct time when daylight-saving-time shifts occur.

**Syntax:**
```
time timezone < -720 - 840 >
time daylight-time-rule < none | alaska | continental-us-and-canada | middle-europe-and-portugal | southern-hemisphere | western-europe | user-defined>
```

East of the 0 meridian, the sign is “+”. West of the 0 meridian, the sign is “-”.

For example, the time zone setting for Berlin, Germany is +60 (zone +1, or 60 minutes), and the time zone setting for Vancouver, Canada is -480 (zone -8, or -480 minutes). To configure the time zone and daylight time rule for Vancouver, Canada:

```
ProCurve(config)# time timezone -480
daylight-time-rule continental-us-and-canada
```

Configure the Time and Date. The switch uses the time command to configure both the time of day and the date. Also, executing time without parameters lists the switch’s time of day and date. Note that the CLI uses a 24-hour clock scheme; that is, hour (hh) values from 1 p.m. to midnight are input as 13 - 24, respectively.

**Syntax:** `time [ hh:mm [:ss ]] [ mm/dd/[ yy ] yy ]`

For example, to set the switch to 9:45 a.m. on November 17, 2002:

```
ProCurve(config)# time 9:45 11/17/02
```

**Note**

Executing `reload` or `boot` resets the time and date to their default startup values.
Web: Configuring System Parameters

In the web browser interface, you can enter the following system information:

- System Name
- System Location
- System Contact

For access to the MAC Age Interval and the Time parameters, use the menu interface or the CLI.

**Configure System Parameters in the Web Browser Interface.**

1. Click on the **Configuration** tab.
2. Click on **[System Info]**.
3. Enter the data you want in the displayed fields.
4. Implement your new data by clicking on **[Apply Changes]**.

To access the web-based help provided for the switch, click on **[?]** in the web browser screen.
# Configuring IP Addressing

## Contents

**Overview** ................................................................. 8-2  
**IP Configuration** ....................................................... 8-2  
  - Just Want a Quick Start with IP Addressing? .................. 8-3  
  - IP Addressing with Multiple VLANs ........................... 8-4  
  - Menu: Configuring IP Address, Gateway, and Time-To-Live (TTL) ... 8-5  
  - CLI: Configuring IP Address, Gateway, and Time-To-Live (TTL) ... 8-6  
  - Web: Configuring IP Addressing ................................. 8-10  
  - How IP Addressing Affects Switch Operation ................. 8-11  
    - DHCP/Bootp Operation ........................................... 8-12  
    - Network Preparations for Configuring DHCP/Bootp .......... 8-14  

**IP Preserve: Retaining VLAN-1 IP Addressing Across Configuration File Downloads** ........ 8-15  
  - Operating Rules for IP Preserve .............................. 8-15  
  - Enabling IP Preserve ............................................... 8-16
Overview

You can configure IP addressing through all of the switch’s interfaces. You can also:

- Easily edit a switch configuration file to allow downloading the file to multiple switches without overwriting each switch’s unique gateway and VLAN 1 IP addressing.
- Assign up to 32 IP addresses to a VLAN (multinetting).

Why Configure IP Addressing? In its factory default configuration, the switch operates as a multiport learning bridge with network connectivity provided by the ports on the switch. However, to enable specific management access and control through your network, you will need IP addressing. Table 8-1 on page 8-11 shows the switch features that depend on IP addressing to operate.

IP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address and Subnet Mask</td>
<td>DHCP/Bootp</td>
<td>page 8-5</td>
<td>page 8-6</td>
<td>page 8-10</td>
</tr>
<tr>
<td>Multiple IP Addresses on a VLAN</td>
<td>n/a</td>
<td>—</td>
<td>page 8-8</td>
<td>—</td>
</tr>
<tr>
<td>Default Gateway Address</td>
<td>none</td>
<td>page 8-5</td>
<td>page 8-6</td>
<td>page 8-10</td>
</tr>
<tr>
<td>Packet Time-To-Live (TTL)</td>
<td>64 seconds</td>
<td>page 8-5</td>
<td>page 8-6</td>
<td>—</td>
</tr>
<tr>
<td>Time Server (Timep)</td>
<td>DHCP</td>
<td>page 8-5</td>
<td>page 8-6</td>
<td>—</td>
</tr>
</tbody>
</table>

**IP Address and Subnet Mask.** Configuring the switch with an IP address expands your ability to manage the switch and use its features. By default, the switch is configured to automatically receive IP addressing on the default VLAN from a DHCP/Bootp server that has been configured correctly with information to support the switch. (Refer to “DHCP/Bootp Operation” on page 8-12 for information on setting up automatic configuration from a server.) However, if you are not using a DHCP/Bootp server to configure IP addressing,
use the menu interface or the CLI to manually configure the initial IP values. After you have network access to a device, you can use the web browser interface to modify the initial IP configuration if needed.

For information on how IP addressing affects switch operation, refer to “How IP Addressing Affects Switch Operation” on page 8-11.

**Multinetting: Assigning Multiple IP Addresses to a VLAN.** For a given VLAN you can assign up to 32 IP addresses. This allows you to combine two or more subnets on the same VLAN, which enables devices in the combined subnets to communicate normally through the network without needing to reconfigure the IP addressing in any of the combined subnets.

**Default Gateway Operation.** The default gateway is required when a router is needed for tasks such as reaching off-subnet destinations or forwarding traffic across multiple VLANs. The gateway value is the IP address of the next-hop gateway node for the switch, which is used if the requested destination address is not on a local subnet/VLAN. If the switch does not have a manually-configured default gateway and DHCP/Bootp is configured on the primary VLAN, then the default gateway value provided by the DHCP or Bootp server will be used. If the switch has a manually configured default gateway, then the switch uses his gateway, even if a different gateway is received via DHCP or Bootp on the primary VLAN. This is also true for manually configured TimeP, SNTP, and Time-To-Live(TTL). (In the default configuration, VLAN 1 is the Primary VLAN.) Refer to the information on Primary VLANs in the Advanced Traffic Management Guide for your switch.

**Packet Time-To-Live (TTL).** This parameter specifies the maximum number of routers (hops) through which a packet can pass before being discarded. Each router decreases a packet’s TTL by 1 before forwarding the packet. If decreasing the TTL causes the TTL to be 0, the router drops the packet instead of forwarding it. In most cases, the default setting (64) is adequate.

**Just Want a Quick Start with IP Addressing?**

If you just want to give the switch an IP address so that it can communicate on your network, or if you are not using VLANs, ProCurve recommends that you use the Switch Setup screen to quickly configure IP addressing. To do so, do one of the following:

- Enter `setup` at the CLI Manager level prompt.
- Select **8. Run Setup** in the Main Menu of the menu interface.
For more on using the Switch Setup screen, refer to the *Installation and Getting Started Guide* you received with the switch.

**IP Addressing with Multiple VLANs**

In the factory-default configuration, the switch has one, permanent default VLAN (named DEFAULT_VLAN) that includes all ports on the switch. Thus, when only the default VLAN exists in the switch, if you assign an IP address and subnet mask to the switch, you are actually assigning the IP addressing to the DEFAULT_VLAN.

**Notes**

- If multiple VLANs are configured, then each VLAN can have its own IP address. This is because each VLAN operates as a separate broadcast domain and requires a unique IP address and subnet mask. A default gateway (IP) address for the switch is optional, but recommended.

- In the factory-default configuration, the default VLAN (named DEFAULT_VLAN) is the switch’s *primary* VLAN. The switch uses the primary VLAN for learning the default gateway address. The switch can also learn other settings from a DHCP or Bootp server, such as (packet) Time-To-Live (TTL), and Timep or SNMP settings. (Other VLANs can also use DHCP or BootP to acquire IP addressing. However, the switch’s gateway, TTL, and TimeP or SNTP values, which are applied globally, and not per-VLAN, will be acquired through the primary VLAN only, unless manually set by using the CLI, Menu, or web browser interface. (If these parameters are manually set, they will *not* be overwritten by alternate values received from a DHCP or Bootp server.) For more on VLANs, refer to the chapter titled “Static Virtual LANs” in the *Advanced Traffic Management Guide* for your switch.

- The IP addressing used in the switch should be compatible with your network. That is, the IP address must be unique and the subnet mask must be appropriate for your IP network.

- If you change the IP address through either Telnet access or the web browser interface, the connection to the switch will be lost. You can reconnect by either restarting Telnet with the new IP address or entering the new address as the URL in your web browser.
Menu: Configuring IP Address, Gateway, and Time-To-Live (TTL)

Do one of the following:

- To manually enter an IP address, subnet mask, set the IP Config parameter to Manual and then manually enter the IP address and subnet mask values you want for the switch.
- To use DHCP or Bootp, use the menu interface to ensure that the IP Config parameter is set to DHCP/Bootp, then refer to “DHCP/Bootp Operation” on page 8-12.

To Configure IP Addressing.

1. From the Main Menu, Select.
2. Switch Configuration …
5. IP Configuration

Notes

If multiple VLANs are configured, a screen showing all VLANs appears instead of the following screen.

The Menu interface displays the IP address for any VLAN. If you use the CLI to configure the IP address on a VLAN, use the CLI show ip command to list them. (Refer to “Viewing the Current IP Configuration” on page 8-6.)
3. If the switch needs to access a router, for example, to reach off-subnet destinations, select the **Default Gateway** field and enter the IP address of the gateway router.

4. If you need to change the packet Time-To-Live (TTL) setting, select **Default TTL** and type in a value between 2 and 255.

5. To configure IP addressing, select **IP Config** and do one of the following:
   - If you want to have the switch retrieve its IP configuration from a DHCP or Bootp server, at the **IP Config** field, keep the value as **DHCP/Bootp** and go to step 8.
   - If you want to manually configure the IP information, use the Space bar to select **Manual** and use the [Tab] key to move to the other IP configuration fields.

6. Select the **IP Address** field and enter the IP address for the switch.

7. Select the **Subnet Mask** field and enter the subnet mask for the IP address.

8. Press **Enter**, then **[S]** (for **Save**).

**CLI: Configuring IP Address, Gateway, and Time-To-Live (TTL)**

<table>
<thead>
<tr>
<th>IP Commands Used in This Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip</td>
<td>8-6</td>
</tr>
<tr>
<td>ip address <code>&lt;mask-length&gt;</code></td>
<td>8-7, 8-8</td>
</tr>
<tr>
<td>ip address <code>/&lt;mask-bits&gt;</code></td>
<td>8-7, 8-8</td>
</tr>
<tr>
<td>ip default-gateway</td>
<td>8-10</td>
</tr>
<tr>
<td>ip ttl</td>
<td>8-10</td>
</tr>
</tbody>
</table>

**Viewing the Current IP Configuration.**

**Syntax:** show ip

*This command displays the IP addressing for each VLAN configured in the switch. If only the DEFAULT_VLAN exists, then its IP configuration applies to all ports in the switch. Where multiple VLANs are configured, the IP addressing is listed per VLAN. The display includes switch-wide packet time-to-live, and (if configured) the switch’s default gateway and Timep configuration.*
(You can also use the `show management` command to display the IP addressing and time server IP addressing configured on the switch. Refer to figure 9-6 on page 9-10.)

For example, in the factory-default configuration (no IP addressing assigned), the switch’s IP addressing appears as:

```
ProCurve> show ip
  Internet (IP) Service
  Default Gateway :
  Default TTL : 64
  Arp Age : 20
  TimeP Config : DHCP TimeP Poll Interval (min) : 720
  VLAN | IP Config IP Address Subnet Mask
  --------------- + --------------- --------------- ---------------
  DEFAULT_VLAN | DHCP/Bootp
```

**Figure 8-2. Example of the Switch’s Default IP Addressing**

With multiple VLANs and some other features configured, `show ip` provides additional information:

```
ProCurve> show ip
  Internet (IP) Service
  IP Routing : Disabled
  Default Gateway : 10.28.227.1
  Default TTL : 64
  VLAN | IP Config IP Address Subnet Mask
  --------------- + --------------- --------------- ---------------
  DEFAULT_VLAN | Manual 10.28.227.101 255.255.248.0
  VLAN_2  | Disabled
```

**Figure 8-3. Example of Show IP Listing with Non-Default IP Addressing Configured**

**Configure an IP Address and Subnet Mask.** The following command includes both the IP address and the subnet mask. You must either include the ID of the VLAN for which you are configuring IP addressing or go to the context configuration level for that VLAN. (If you are not using VLANs on the switch—that is, if the only VLAN is the default VLAN—then the VLAN ID is always “1”.)
The default IP address setting for the DEFAULT_VLAN is **DHCP/Bootp**. On additional VLANs you create, the default IP address setting is **Disabled**.

**Syntax:**

```
[ no ] vlan < vlan-id > ip address <ip-address/mask-length>
or
[ no ] vlan < vlan-id > ip address < ip-address > < mask-bits >
or
vlan < vlan-id > ip address dhcp-bootp
```

This example configures IP addressing on the default VLAN with the subnet mask specified in mask bits.

```
ProCurve(config)# vlan 1 ip address 10.28.227.103 255.255.255.0
```

This example configures the same IP addressing as the preceding example, but specifies the subnet mask by mask length.

```
ProCurve(config)# vlan 1 ip address 10.28.227.103/24
```

This example deletes an IP address configured in VLAN 1.

```
ProCurve (config) no vlan 1 ip address 10.28.227.103/24
```

**Configure Multiple IP Addresses on a VLAN (Multinetting).** The following is supported:

- Up to 2000 IP addresses for the switch
- Up to 32 IP addresses for the same VLAN
- Up to 512 IP VLANs, that is, VLANs on which you can configure IP addresses
- Each IP address on a VLAN must be for a separate subnet, whether on the same VLAN or different VLANs.

**Syntax:**

```
[ no ] vlan < vlan-id > ip address <ip-address/mask-length>
[ no ] vlan < vlan-id > ip address < ip-address > < mask-bits >
```

For example, if you wanted to multinet VLAN_20 (VID = 20) with the IP addresses shown below, you would perform steps similar to the following. (For this example, assume that the first IP address is already configured.)

<table>
<thead>
<tr>
<th>IP Address</th>
<th>VID</th>
<th>IP Address</th>
<th>Subnet Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st address</td>
<td>20</td>
<td>10.25.33.101</td>
<td>255.255.240.0</td>
</tr>
<tr>
<td>2nd address</td>
<td>20</td>
<td>10.26.33.101</td>
<td>255.255.240.0</td>
</tr>
<tr>
<td>3rd address</td>
<td>20</td>
<td>10.27.33.101</td>
<td>255.255.240.0</td>
</tr>
</tbody>
</table>
If you then wanted to multinet the default VLAN, you would do the following:

```
ProCurve(vlan-20)# vlan 20
ProCurve(vlan-20)# ip address 10.26.33.101/20
ProCurve(vlan-20)# ip address 10.27.33.101/20
ProCurve(vlan-20)# show ip

Internet (IP) Service
IP Routing : Disabled

Default Gateway :
Default TTL   : 64
Arp Age       : 20

+-----------------+-----------------+-----------------+
| VLAN            | IP Config       | IP Address      | Subnet Mask    |
+-----------------+-----------------+-----------------+-----------------+
| DEFAULT_VLAN    | Manual          | 10.20.30.100    | 255.255.240.0  |
|                 | Manual          | 10.25.33.101    | 255.255.240.0  |
|                 | Manual          | 10.26.33.101    | 255.255.240.0  |
|                 | Manual          | 10.27.33.101    | 255.255.240.0  |
+-----------------+-----------------+-----------------+-----------------+
```

**Figure 8-4. Example of Configuring and Displaying a Multinetted VLAN**

The Internet (IP) Service screen in the Menu interface (figure 8-1 on page 8-5) displays the first IP address for each VLAN. You must use the CLI `show ip` command to display the full IP address listing for multinetted VLANs.
**Removing or Replacing IP Addresses in a Multinetted VLAN.** To remove an IP address from a multinetted VLAN, use the `no` form of the IP address command shown on page 8-8. Generally, to replace one IP address with another, you should first remove the address you want to replace, and then enter the new address.

**Configure the Optional Default Gateway.** Using the Global configuration level, you can manually assign one default gateway to the switch. (The switch does not allow IP addressing received from a DHCP or Bootp server to replace a manually configured default gateway.)

**Syntax:** `ip default-gateway <ip-address>`

For example:

```
ProCurve(config)# ip default-gateway 10.28.227.115
```

---

**Note**

The switch uses the IP default gateway only while operating as a Layer 2 device. While routing is enabled on the switch, the IP default gateway is not used. Thus, to avoid loss of Telnet access to off-subnet management stations, you should use the `ip route` command to configure a static (default) route before enabling routing. For more information, refer to the chapter titled “IP Routing Features” in the *Multicast and Routing Guide* for your switch.

**Configure Time-To-Live (TTL).** The maximum number of routers (hops) through which a packet can pass before being discarded. (The default is 64.) Each router decreases a packet’s TTL by 1 before forwarding the packet. If a router decreases the TTL to 0, the router drops the packet instead of forwarding it.

**Syntax:** `ip ttl <number-of-hops>`

```
ProCurve(config)# ip ttl 60
```

In the CLI, you can execute this command only from the global configuration level. The TTL default is 64, and the range is 2 - 255.

**Web: Configuring IP Addressing**

You can use the web browser interface to access IP addressing only if the switch already has an IP address that is reachable through your network.

1. Click on the Configuration tab.
2. Click on [IP Configuration].
3. If you need further information on using the web browser interface, click on [?] to access the web-based help available for the switch.

How IP Addressing Affects Switch Operation

Without an IP address and subnet mask compatible with your network, the switch can be managed only through a direct terminal device connection to the Console RS-232 port. You can use direct-connect console access to take advantage of features that do not depend on IP addressing. However, to realize the full capabilities ProCurve proactive networking offers through the switch, configure the switch with an IP address and subnet mask compatible with your network. The following table lists the general features available with and without a network-compatible IP address configured.

Table 8-1. Features Available With and Without IP Addressing on the Switch

<table>
<thead>
<tr>
<th>Features Available Without an IP Address</th>
<th>Additional Features Available with an IP Address and Subnet Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Direct-connect access to the CLI and the menu interface.</td>
<td>• Web browser interface access, with configuration, security, and diagnostic tools, plus the Alert Log for discovering problems detected in the switch along with suggested solutions</td>
</tr>
<tr>
<td>• DHCP or Bootp support for automatic IP address configuration, and DHCP support for automatic Timep server IP address configuration</td>
<td>• SNMP network management access such as ProCurve Manager for network configuration, monitoring, problem-finding and reporting, analysis, and recommendations for changes to increase control and uptime</td>
</tr>
<tr>
<td>• Multiple Spanning Tree Protocol</td>
<td>• TACACS+, RADIUS, SSH, SSL, and 802.1X authentication</td>
</tr>
<tr>
<td>• Port settings and port trunking</td>
<td>• Multinetting on VLANs</td>
</tr>
<tr>
<td>• Switch meshing</td>
<td>• Telnet access to the CLI or the menu interface</td>
</tr>
<tr>
<td>• Console-based status and counters information for monitoring switch operation and diagnosing problems through the CLI or menu interface.</td>
<td>• IGMP</td>
</tr>
<tr>
<td>• VLANs and GVRP</td>
<td>• TimeP and SNTP server configuration</td>
</tr>
<tr>
<td>• Serial downloads of software updates and configuration files (Xmodem)</td>
<td>• TFTP download of configurations and software updates</td>
</tr>
<tr>
<td>• Link test</td>
<td>• Access Control Lists (ACLs)</td>
</tr>
<tr>
<td>• Port monitoring</td>
<td>• IP routing, Multicast Routing</td>
</tr>
<tr>
<td>• Password authentication</td>
<td>• VRRP router redundancy</td>
</tr>
<tr>
<td>• Quality of Service (QoS)</td>
<td>• PIM-DM and PIM-SM</td>
</tr>
<tr>
<td>• Authorized IP manager security</td>
<td>• Radius</td>
</tr>
<tr>
<td></td>
<td>• Ping test</td>
</tr>
</tbody>
</table>
Configuring IP Addressing
IP Configuration

DHCP/Bootp Operation

**Overview.** DHCP/Bootp is used to provide configuration data from a DHCP or Bootp server to the switch. This data can be the IP address, subnet mask, default gateway, Timep Server address, and TFTP server address. If a TFTP server address is provided, this allows the switch to TFTP a previously saved configuration file from the TFTP server to the switch. With either DHCP or Bootp, the servers must be configured prior to the switch being connected to the network.

**Note**

The switches covered in this guide are compatible with both DHCP and Bootp servers.

**The DHCP/Bootp Process.** Whenever the **IP Config** parameter in the switch or in an individual VLAN in the switch is configured to **DHCP/Bootp** (the default), or when the switch is rebooted with this configuration:

1. DHCP/Bootp requests are automatically broadcast on the local network. (The switch sends one type of request to which either a DHCP or Bootp server can respond.)

2. When a DHCP or Bootp server receives the request, it replies with a previously configured IP address and subnet mask for the switch. The switch also receives an IP Gateway address if the server has been configured to provide one. In the case of Bootp, the server must first be configured with an entry that has the switch's MAC address. (To determine the switch's MAC address, refer to appendix D, “MAC Address Management”.) The switch properly handles replies from either type of server. If multiple replies are returned, the switch tries to use the first reply.

**Note**

If you manually configure default gateway, TTL, TimeP, and/or SNTP parameters on the switch, it ignores any values received for the same parameters via DHCP or Bootp.

If the switch is initially configured for DHCP/Bootp operation (the default), or if it reboots with this configuration, it begins sending request packets on the network. If the switch does not receive a reply to its DHCP/Bootp requests, it continues to periodically send request packets, but with decreasing frequency. Thus, if a DHCP or Bootp server is not available or accessible to the switch when DHCP/Bootp is first configured, the switch may not immediately receive the desired configuration. After verifying that the server has become accessible to the switch, reboot the switch to re-start the process immediately.
Configuring IP Addressing
IP Configuration

**DHCP Operation.** A significant difference between a DHCP configuration and a Bootp configuration is that an IP address assignment from a DHCP server is automatic. Depending on how the DHCP server is configured, the switch may receive an IP address that is temporarily leased. Periodically the switch may be required to renew its lease of the IP configuration. Thus, the IP addressing provided by the server may be different each time the switch reboots or renews its configuration from the server. However, you can fix the address assignment for the switch by doing either of the following:

- Configure the server to issue an “infinite” lease.
- Using the switch’s MAC address as an identifier, configure the server with a “Reservation” so that it will always assign the same IP address to the switch. (For MAC address information, refer to appendix D, “MAC Address Management”.)

For more information on either of these procedures, refer to the documentation provided with the DHCP server.

**Bootp Operation.** When a Bootp server receives a request it searches its Bootp database for a record entry that matches the MAC address in the Bootp request from the switch. If a match is found, the configuration data in the associated database record is returned to the switch. For many Unix systems, the Bootp database is contained in the `/etc/bootptab` file. In contrast to DHCP operation, Bootp configurations are always the same for a specific receiving device. That is, the Bootp server replies to a request with a configuration previously stored in the server and designated for the requesting device.

**Bootp Database Record Entries.** A minimal entry in the Bootp table file `/etc/bootptab` to update an IP address and subnet mask to the switch or a VLAN configured in the switch would be similar to this entry:

```
5400switch:
    ht=ether:
    ha=0030c1123456:
    ip=10.66.77.88:
    sm=255.255.248.0:
    gw=10.66.77.1:
    hn:
    vm=rfc1048
```

An entry in the Bootp table file `/etc/bootptab` to tell the switch or VLAN where to obtain a configuration file download would be similar to this entry:

```
5400switch:
    ht=ether:
    ha=0030c1123456:
    ip=10.66.77.88:
    sm=255.255.248.0:
```
gw=10.66.77.1:
lg=10.22.33.44:
T144="switch.cfg":
vm=rfc1048

where:

5400switch is a user-defined symbolic name to help you find the correct section of the bootptab file. If you have multiple switches that will be using Bootp to get their IP configuration, you should use a unique symbolic name for each switch.

ht is the “hardware type”. For the switches covered in this guide, enter ether (for Ethernet). This tag must precede the ha tag.

ha is the “hardware address”. Use the switch’s (or VLAN’s) 12-digit MAC address.

ip is the IP address to be assigned to the switch (or VLAN).

sm is the subnet mask of the subnet in which the switch (or VLAN) is installed.

gw is the IP address of the default gateway.

lg TFTP server address (source of final configuration file)

T144 is the vendor-specific “tag” identifying the configuration file to download.

vm is a required entry that specifies the Bootp report format. Use rfc1048 for the switches covered in this guide.

Note

The above Bootp table entry is a sample that will work for the switch when the appropriate addresses and file names are used.

Network Preparations for Configuring DHCP/Bootp

In its default configuration, the switch is configured for DHCP/Bootp operation. However, the DHCP/Bootp feature will not acquire IP addressing for the switch unless the following tasks have already been completed:

■ For Bootp operation:
  • A Bootp database record has already been entered into an appropriate Bootp server.
  • The necessary network connections are in place
  • The Bootp server is accessible from the switch

■ For DHCP operation:
  • A DHCP scope has been configured on the appropriate DHCP server.
  • The necessary network connections are in place
  • A DHCP server is accessible from the switch
**Note**

Designating a primary VLAN other than the default VLAN affects the switch’s use of information received via DHCP/Bootp. For more on this topic, refer to the chapter describing VLANs in the *Advanced Traffic Management Guide* for your switch.

After you reconfigure or reboot the switch with DHCP/Bootp enabled in a network providing DHCP/Bootp service, the switch does the following:

- Receives an IP address and subnet mask and, if configured in the server, a gateway IP address and the address of a Timep server.
- If the DHCP/Bootp reply provides information for downloading a configuration file, the switch uses TFTP to download the file from the designated source, then reboots itself. (This assumes that the switch or VLAN has connectivity to the TFTP file server specified in the reply, that the configuration file is correctly named, and that the configuration file exists in the TFTP directory.)

---

**IP Preserve: Retaining VLAN-1 IP Addressing Across Configuration File Downloads**

For the switches covered in this guide, IP Preserve enables you to copy a configuration file to multiple switches while retaining the individual IP address and subnet mask on VLAN 1 in each switch, and the Gateway IP address assigned to the switch. This enables you to distribute the same configuration file to multiple switches without overwriting their individual IP addresses.

**Operating Rules for IP Preserve**

When `ip preserve` is entered as the last line in a configuration file stored on a TFTP server:

- If the switch’s current IP address for VLAN 1 was not configured by DHCP/Bootp, IP Preserve retains the switch’s current IP address, subnet mask, and IP gateway address when the switch downloads the file and reboots. The switch adopts all other configuration parameters in the configuration file into the startup-config file.
If the switch's current IP addressing for VLAN 1 is from a DHCP server, IP Preserve is suspended. In this case, whatever IP addressing the configuration file specifies is implemented when the switch downloads the file and reboots. If the file includes DHCP/Bootp as the IP addressing source for VLAN 1, the switch will configure itself accordingly and use DHCP/Bootp. If instead, the file includes a dedicated IP address and subnet mask for VLAN 1 and a specific gateway IP address, then the switch will implement these settings in the startup-config file.

The ip preserve statement does not appear in show config listings. To verify IP Preserve in a configuration file, open the file in a text editor and view the last line. For an example of implementing IP Preserve in a configuration file, see figure 8-6, below.

### Enabling IP Preserve

To set up IP Preserve, enter the **ip preserve** statement at the end of a configuration file. (Note that you do not execute IP Preserve by entering a command from the CLI).

```
; J8697A Configuration Editor; Created on release #K.11.00
hostname "ProCurve"
time daylight-time-rule None
  *
  *
password manager
password operator
ip preserve
```

**Figure 8-6. Example of Implementing IP Preserve in a Configuration File**
For example, consider Figure 8-7:

If you apply the following configuration file to figure 8-7, switches 1 - 3 will retain their manually assigned IP addressing and switch 4 will be configured to acquire its IP addressing from a DHCP server.
Figure 8-8. Configuration File in TFTP Server, with DHCP/Bootp Specified as the IP Addressing Source

If you apply this configuration file to figure 8-7, switches 1 - 3 will still retain their manually assigned IP addressing. However, switch 4 will be configured with the IP addressing included in the file.
To summarize the IP Preserve effect on IP addressing:

- If the switch received its most recent VLAN 1 IP addressing from a DHCP/Bootp server, it ignores the IP Preserve command when it downloads the configuration file, and implements whatever IP addressing instructions are in the configuration file.

- If the switch did not receive its most recent VLAN 1 IP addressing from a DHCP/Bootp server, it retains its current IP addressing when it downloads the configuration file.

- The content of the downloaded configuration file determines the IP addresses and subnet masks for other VLANs.
Configuring IP Addressing
IP Preserve: Retaining VLAN-1 IP Addressing Across Configuration File Downloads

—This page intentionally unused—
Time Protocols

Contents

Overview ......................................................... 9-2
  TimeP Time Synchronization ............................... 9-2
  SNTP Time Synchronization ................................ 9-2

Selecting a Time Synchronization Protocol or Turning Off Time Protocol Operation .................................. 9-3
  General Steps for Running a Time Protocol on the Switch: ........................................ 9-3
  Disabling Time Synchronization ................................ 9-4

SNTP: Viewing, Selecting, and Configuring ............................. 9-4
  Menu: Viewing and Configuring SNTP .......................... 9-5
  CLI: Viewing and Configuring SNTP ............................ 9-8
    Viewing the Current SNTP Configuration .................... 9-8
    Configuring (Enabling or Disabling) the SNTP Mode ...... 9-10

TimeP: Viewing, Selecting, and Configuring ............................ 9-15
  Menu: Viewing and Configuring TimeP ......................... 9-16
  CLI: Viewing and Configuring TimeP ........................... 9-18
    Viewing the Current TimeP Configuration .................. 9-18
    Configuring (Enabling or Disabling) the TimeP Mode ...... 9-20

SNTP Unicast Time Polling with Multiple SNTP Servers .............. 9-24
  Address Prioritization ...................................... 9-24
  Displaying All SNTP Server Addresses Configured on the Switch . 9-25
  Adding and Deleting SNTP Server Addresses ................... 9-25
  Menu: Operation with Multiple SNTP Server Addresses Configured 9-27

SNTP Messages in the Event Log .................................. 9-27
Overview

This chapter describes:

■ SNTP Time Protocol Operation
■ TimeP Time Protocol Operation

Using time synchronization ensures a uniform time among interoperating devices. This helps you to manage and troubleshoot switch operation by attaching meaningful time data to event and error messages.

The switch offers TimeP and SNTP (Simple Network Time Protocol) and a timesync command for changing the time protocol selection (or turning off time protocol operation).

Notes

■ Although you can create and save configurations for both time protocols without conflicts, the switch allows only one active time protocol at any time.

■ In the factory-default configuration, the time synchronization option is set to TimeP, with the TimeP mode itself set to Disabled.

TimeP Time Synchronization

You can either manually assign the switch to use a TimeP server or use DHCP to assign the TimeP server. In either case, the switch can get its time synchronization updates from only one, designated TimeP server. This option enhances security by specifying which time server to use.

SNTP Time Synchronization

SNTP provides two operating modes:

■ Broadcast Mode: The switch acquires time updates by accepting the time value from the first SNTP time broadcast detected. (In this case, the SNTP server must be configured to broadcast time updates to the network broadcast address. Refer to the documentation provided with your SNTP server application.) Once the switch detects a partic-
ular server, it ignores time broadcasts from other SNTP servers unless the configurable Poll Interval expires three consecutive times without an update received from the first-detected server.

---

**Note**

To use Broadcast mode, the switch and the SNTP server must be in the same subnet.

---

- **Unicast Mode:** The switch requests a time update from the configured SNTP server. (You can configure one server using the menu interface, or up to three servers using the CLI `sntp server` command.) This option provides increased security over the Broadcast mode by specifying which time server to use instead of using the first one detected through a broadcast.

---

**Selecting a Time Synchronization Protocol or Turning Off Time Protocol Operation**

General Steps for Running a Time Protocol on the Switch:

1. Select the time synchronization protocol: **SNTP** or **TimeP** (the default).
2. Enable the protocol. The choices are:
   - **SNTP:** Broadcast or Unicast
   - **TimeP:** DHCP or Manual
3. Configure the remaining parameters for the time protocol you selected.

The switch retains the parameter settings for both time protocols even if you change from one protocol to the other. Thus, if you select a time protocol, the switch uses the parameters you last configured for the selected protocol.
Note that simply selecting a time synchronization protocol does not enable that protocol on the switch unless you also enable the protocol itself (step 2, above). For example, in the factory-default configuration, TimeP is the selected time synchronization method. However, because TimeP is disabled in the factory-default configuration, no time synchronization protocol is running.

Disabling Time Synchronization

You can use either of the following methods to disable time synchronization without changing the Timep or SNTP configuration:

- In the System Information screen of the Menu interface, set the **Time Synch Method** parameter to **None**, then press [Enter], then [S] (for **Save**).
- In the Global config level of the CLI, execute **no timesync**.

### SNTP: Viewing, Selecting, and Configuring

<table>
<thead>
<tr>
<th>SNTP Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>view the SNTP time synchronization configuration</td>
<td>n/a</td>
<td>page 9-5</td>
<td>page 9-8</td>
<td></td>
</tr>
<tr>
<td>select SNTP as the time synchronization method</td>
<td>timep</td>
<td>page 9-6</td>
<td>page 9-10 ff.</td>
<td>—</td>
</tr>
<tr>
<td>disable time synchronization</td>
<td>timep</td>
<td>page 9-6</td>
<td>page 9-13</td>
<td>—</td>
</tr>
<tr>
<td>enable the SNTP mode (Broadcast, Unicast, or Disabled)</td>
<td>disabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>broadcast</td>
<td>n/a</td>
<td>page 9-6</td>
<td>page 9-10</td>
<td>—</td>
</tr>
<tr>
<td>unicast</td>
<td>n/a</td>
<td>page 9-6</td>
<td>page 9-11</td>
<td>—</td>
</tr>
<tr>
<td>none/disabled</td>
<td>n/a</td>
<td>page 9-6</td>
<td>page 9-14</td>
<td>—</td>
</tr>
<tr>
<td>configure an SNTP server address (for Unicast mode only)</td>
<td>none</td>
<td>page 9-6</td>
<td>page 9-11 ff.</td>
<td>—</td>
</tr>
<tr>
<td>change the SNTP server version (for Unicast mode only)</td>
<td>3</td>
<td>page 9-7</td>
<td>page 9-13</td>
<td>—</td>
</tr>
<tr>
<td>change the SNTP poll interval</td>
<td>720 seconds</td>
<td>page 9-7</td>
<td>page 9-13</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 9-1. SNTP Parameters

<table>
<thead>
<tr>
<th>SNTP Parameter</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Sync Method</td>
<td>Used to select either SNTP, TIMEP, or None as the time synchronization method.</td>
</tr>
<tr>
<td>SNTP Mode</td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>The Default. SNTP does not operate, even if specified by the Menu interface <strong>Time Sync Method</strong> parameter or the CLI <strong>timesync</strong> command.</td>
</tr>
<tr>
<td>Unicast</td>
<td>Directs the switch to poll a specific server for SNTP time synchronization. Requires at least one server address.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Directs the switch to acquire its time synchronization from data broadcast by any SNTP server to the network broadcast address. The switch uses the first server detected and ignores any others. However, if the Poll Interval expires three times without the switch detecting a time update from the original server, it the switch accepts a broadcast time update from the next server it detects.</td>
</tr>
<tr>
<td>Poll Interval (seconds)</td>
<td>In Unicast Mode: Specifies how often the switch polls the designated SNTP server for a time update. In Broadcast Mode: Specifies how often the switch polls the network broadcast address for a time update.</td>
</tr>
<tr>
<td>Server Address</td>
<td>Used only when the <strong>SNTP Mode</strong> is set to <strong>Unicast</strong>. Specifies the IP address of the SNTP server that the switch accesses for time synchronization updates. You can configure up to three servers; one using the menu or CLI, and two more using the CLI. Refer to “SNTP Unicast Time Polling with Multiple SNTP Servers” on page 24.</td>
</tr>
<tr>
<td>Server Version</td>
<td>Default: 3; range: 1 - 7. Specifies the SNTP software version to use, and is assigned on a per-server basis. The version setting is backwards-compatible. For example, using version 3 means that the switch accepts versions 1 through 3.</td>
</tr>
</tbody>
</table>

Menu: Viewing and Configuring SNTP

To View, Enable, and Modify SNTP Time Protocol:

1. From the Main Menu, select:

   2. **Switch Configuration**...

      1. **System Information**
Time Protocols
SNTP: Viewing, Selecting, and Configuring

---

**Figure 9-1. The System Information Screen (Default Values)**

2. Press [E] (for Edit). The cursor moves to the **System Name** field.

3. Use ↓ to move the cursor to the **Time Sync Method** field.

4. Use the Space bar to select **SNTP**, then press ↓ once to display and move to the **SNTP Mode** field.

5. Do one of the following:
   - Use the Space bar to select the **Broadcast** mode, then press ↓ to move the cursor to the **Poll Interval** field, and go to step 6. (For Broadcast mode details, refer to “SNTP Operating Modes” on page 9-2.)

---

**Figure 9-2. Time Configuration Fields for SNTP with Broadcast Mode**

- Use the Space bar to select the **Unicast** mode, then do the following:
i. Press \[\rightarrow\] to move the cursor to the **Server Address** field.

ii. Enter the IP address of the SNTP server you want the switch to use for time synchronization.

**Note:** This step replaces any previously configured server IP address. If you will be using backup SNTP servers (requires use of the CLI), then refer to “SNTP Unicast Time Polling with Multiple SNTP Servers” on page 9-24.

iii. Press \[\uparrow\] to move the cursor to the **Server Version** field. Enter the value that matches the SNTP server version running on the device you specified in the preceding step (step ii). If you are unsure which version to use, ProCurve recommends leaving this value at the default setting of 3 and testing SNTP operation to determine whether any change is necessary.

**Note:** Using the menu to enter the IP address for an SNTP server when the switch already has one or more SNTP servers configured causes the switch to delete the primary SNTP server from the server list and to select a new primary SNTP server from the IP address(es) in the updated list. For more on this topic, refer to “SNTP Unicast Time Polling with Multiple SNTP Servers” on page 9-24.

iv. Press \[\rightarrow\] to move the cursor to the **Poll Interval** field, then go to step 6.

<table>
<thead>
<tr>
<th>Time Sync Method [None] : SNTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNTP Mode [Disabled] : Unicast</td>
</tr>
<tr>
<td>Poll Interval (sec) [720] : [720]</td>
</tr>
<tr>
<td>Time Zone [0] : 0</td>
</tr>
<tr>
<td>Daylight Time Rule [None] : None</td>
</tr>
</tbody>
</table>

**Note:** The Menu interface lists only the highest priority SNTP server, even if others are configured. To view all SNTP servers configured on the switch, use the CLI `show management` command. Refer to “SNTP Unicast Time Polling with Multiple SNTP Servers” on page 9-24.

**Figure 9-3.  SNTP Configuration Fields for SNTP Configured with Unicast Mode**

6. In the **Poll Interval** field, enter the time in seconds that you want for a Poll Interval. (For Poll Interval operation, see table 9-1, “SNTP Parameters”, on page 9-5.)

7. Press \[Enter\] to return to the Actions line, then \[S\] (for Save) to enter the new time protocol configuration in both the startup-config and running-config files.
CLI: Viewing and Configuring SNTP

CLI Commands Described in this Section

<table>
<thead>
<tr>
<th>SNTP Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show sntp</td>
<td>9-8</td>
</tr>
<tr>
<td>[no] timesync</td>
<td>9-10 and ff., 9-13</td>
</tr>
<tr>
<td>sntp broadcast</td>
<td>9-10</td>
</tr>
<tr>
<td>sntp unicast</td>
<td>9-11</td>
</tr>
<tr>
<td>sntp server</td>
<td>9-11 and ff.</td>
</tr>
<tr>
<td>Protocol Version</td>
<td>9-13</td>
</tr>
<tr>
<td>poll-interval</td>
<td>9-13</td>
</tr>
<tr>
<td>no sntp</td>
<td>9-14</td>
</tr>
</tbody>
</table>

This section describes how to use the CLI to view, enable, and configure SNTP parameters.

Viewing the Current SNTP Configuration

**Syntax:** show sntp

*This command lists both the time synchronization method (TimeP, SNTP, or None) and the SNTP configuration, even if SNTP is not the selected time protocol.*

For example, if you configured the switch with SNTP as the time synchronization method, then enabled SNTP in broadcast mode with the default poll interval, show sntp lists the following:
In the factory-default configuration (where TimeP is the selected time synchronization method), `show sntp` still lists the SNTP configuration even though it is not currently in use. For example:

```
ProCurve(config)# show sntp
SNTP Configuration
  Time Sync Mode: Sntp
  SNTP Mode : Unicast
  Poll Interval (sec) [720] : 720

  IP Address    Protocol Version
  --------------           --------------
  10.10.28.101    3
  10.11.35.117    3
  10.12.115.86    3
```

**Figure 9-4. Example of SNTP Configuration When SNTP Is the Selected Time Synchronization Method**

Even though, in this example, TimeP is the current time synchronous method, the switch maintains the SNTP configuration.

```
ProCurve(config)# show sntp
SNTP Configuration
  Time Sync Mode: Timep
  SNTP Mode : Unicast
  Poll Interval (sec) [720] : 720

  IP Address    Protocol Version
  --------------           --------------
  10.10.28.101    3
  10.11.35.117    3
  10.12.115.86    3
```

**Figure 9-5. Example of SNTP Configuration When SNTP Is Not the Selected Time Synchronization Method**

**Syntax:** `show management`

*This command can help you to easily examine and compare the IP addressing on the switch. It lists the IP addresses for all time servers configured on the switch, plus the IP addresses and default gateway for all VLANs configured on the switch.*
Configuring (Enabling or Disabling) the SNTP Mode

Enabling the SNTP mode means to configure it for either broadcast or unicast mode. Remember that to run SNTP as the switch’s time synchronization protocol, you must also select SNTP as the time synchronization method by using the CLI `timesync` command (or the Menu interface Time Sync Method parameter).

**Syntax:** `timesync sntp`

*Selects SNTP as the time protocol.*

```
sntp < broadcast | unicast >
```

*Enables the SNTP mode (below and page 9-11).*

**Syntax:** `sntp server < ip-addr >`

*Required only for unicast mode page 9-11.*

**Syntax:** `sntp poll-interval < 30 - 720 >`

*Enabling the SNTP mode also enables the SNTP poll interval (default: 720 seconds; page 9-13).*

Enabling SNTP in Broadcast Mode. Because the switch provides an SNTP polling interval (default: 720 seconds), you need only these two commands for minimal SNTP broadcast configuration:

**Syntax:** `timesync sntp`

*Selects SNTP as the time synchronization method.*
Syntax: sntp broadcast

Configures broadcast as the SNTP mode.

For example, suppose:

- Time synchronization is in the factory-default configuration (TimeP is the currently selected time synchronization method).
- You want to:
  1. View the current time synchronization.
  2. Select SNTP as the time synchronization mode.
  3. Enable SNTP for Broadcast mode.
  4. View the SNTP configuration again to verify the configuration.

The commands and output would appear as follows:

```
ProCurve(config)# show sntp
SNTP Configuration
 Time Sync Mode: TimeP
 SNTP Mode : disabled
   Poll Interval (sec) [720] : 720

ProCurve(config)# timesync sntp

ProCurve(config)# sntp broadcast

ProCurve (config)# show sntp
SNTP Configuration
 Time Sync Mode: Sntp
 SNTP Mode : Broadcast
   Poll Interval (sec) [720] : 720
```

Figure 9-7. Example of Enabling SNTP Operation in Broadcast Mode

Enabling SNTP in Unicast Mode. Like broadcast mode, configuring SNTP for unicast mode enables SNTP. However, for Unicast operation, you must also specify the IP address of at least one SNTP server. The switch allows up to three unicast servers. You can use the Menu interface or the CLI to configure one server or to replace an existing Unicast server with another. To add a second or third server, you must use the CLI. For more on SNTP operation with multiple servers, refer to “SNTP Unicast Time Polling with Multiple SNTP Servers” on page 24.

Syntax: timesync sntp

Selects SNTP as the time synchronization method.

Syntax: sntp unicast

Configures the SNTP mode for Unicast operation.
Syntax: sntp server <ip-addr> [version]

Specifies the SNTP server. The default server version is 3.

Syntax: no sntp server < ip-addr >

Deletes the specified SNTP server.

Note

Deleting an SNTP server when only one is configured disables SNTP unicast operation.

For example, to select SNTP and configure it with unicast mode and an SNTP server at 10.28.227.141 with the default server version (3) and default poll interval (720 seconds):

ProCurve(config)# timesync sntp

Selects SNTP.

ProCurve(config)# sntp unicast

Activates SNTP in Unicast mode.

ProCurve(config)# sntp server 10.28.227.141

Specifies the SNTP server and accepts the current SNTP server version (default: 3).

ProCurve(config)# show sntp

SNTP Configuration
Time Sync Mode: Sntp
SNTP Mode : Unicast
Poll Interval (sec) [720] : 720
IP Address Protocol Version
------------------------- ------------
10.28.227.141 3

In this example, the Poll Interval and the Protocol Version appear at their default settings.

Note: Protocol Version appears only when there is an IP address configured for an SNTP server.

Figure 9-8. Example of Configuring SNTP for Unicast Operation

If the SNTP server you specify uses SNTP version 4 or later, use the sntp server command to specify the correct version number. For example, suppose you learned that SNTP version 4 was in use on the server you specified above (IP address 10.28.227.141). You would use the following commands to delete the server IP address and then re-enter it with the correct version number for that server:
Changing the SNTP Poll Interval.

**Syntax:**

```
  sntp poll-interval < 30..720 >
```

*Specifies how long the switch waits between time polling intervals. The default is 720 seconds and the range is 30 to 720 seconds. (This parameter is separate from the poll interval parameter used for Timep operation.)*

For example, to change the poll interval to 300 seconds:

```
ProCurve(config)# sntp poll-interval 300
```

Disabling Time Synchronization Without Changing the SNTP Configuration. The recommended method for disabling time synchronization is to use the `timesync` command.

**Syntax:**

```
  no timesync
```

*Halts time synchronization without changing your SNTP configuration.*

For example, suppose SNTP is running as the switch’s time synchronization protocol, with `Broadcast` as the SNTP mode and the factory-default polling interval. You would halt time synchronization with this command:

```
ProCurve(config)# no timesync
```

If you then viewed the SNTP configuration, you would see the following:
Disabling the SNTP Mode. If you want to prevent SNTP from being used even if selected by timesync (or the Menu interface’s Time Sync Method parameter), configure the SNTP mode as disabled.

Syntax: no sntp

Disables SNTP by changing the SNTP mode configuration to Disabled.

For example, if the switch is running SNTP in Unicast mode with an SNTP server at 10.28.227.141 and a server version of 3 (the default), no sntp changes the SNTP configuration as shown below, and disables time synchronization on the switch.

```
ProCurve(config)# no sntp
ProCurve(config)# show sntp
SNTP Configuration
Time Sync Mode: Sntp
SNTP Mode : disabled
Poll Interval (sec) [720] : 720
IP Address     Protocol Version
---------------  --------------
10.28.227.141   3
```

Figure 9-10. Example of SNTP with Time Synchronization Disabled

Figure 9-11. Example of Disabling Time Synchronization by Disabling the SNTP Mode
# TimeP: Viewing, Selecting, and Configuring

<table>
<thead>
<tr>
<th>TimeP Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>view the Timep time synchronization configuration</td>
<td>n/a</td>
<td>page 9-16</td>
<td>page 9-18</td>
<td>—</td>
</tr>
<tr>
<td>select Timep as the time synchronization method</td>
<td>TIMEP</td>
<td>page 9-14</td>
<td>pages 9-20 ff.</td>
<td>—</td>
</tr>
<tr>
<td>disable time synchronization</td>
<td>timep</td>
<td>page 9-16</td>
<td>page 9-23</td>
<td>—</td>
</tr>
<tr>
<td>enable the Timep mode</td>
<td>Disabled</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DHCP</td>
<td>—</td>
<td>page 9-16</td>
<td>page 9-20</td>
<td>—</td>
</tr>
<tr>
<td>manual</td>
<td>—</td>
<td>page 9-17</td>
<td>page 9-21</td>
<td>—</td>
</tr>
<tr>
<td>none/disabled</td>
<td>—</td>
<td>page 9-16</td>
<td>page 9-23</td>
<td>—</td>
</tr>
<tr>
<td>change the SNTP poll interval</td>
<td>720 minutes</td>
<td>page 9-17</td>
<td>page 9-22</td>
<td>—</td>
</tr>
</tbody>
</table>

## Table 9-2. Timep Parameters

<table>
<thead>
<tr>
<th>SNTP Parameter</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Time Sync Method</strong></td>
<td>Used to select either TIMEP (the default), SNTP, or None as the time synchronization method.</td>
</tr>
<tr>
<td><strong>Timep Mode</strong></td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>The Default. Timep does not operate, even if specified by the Menu interface Time Sync Method parameter or the CLI timesync command.</td>
</tr>
<tr>
<td>DHCP</td>
<td>When Timep is selected as the time synchronization method, the switch attempts to acquire a Timep server IP address via DHCP. If the switch receives a server address, it polls the server for updates according to the Timep poll interval. If the switch does not receive a Timep server IP address, it cannot perform time synchronization updates.</td>
</tr>
<tr>
<td>Manual</td>
<td>When Timep is selected as the time synchronization method, the switch attempts to poll the specified server for updates according to the Timep poll interval. If the switch fails to receive updates from the server, time synchronization updates do not occur.</td>
</tr>
<tr>
<td>Server Address</td>
<td>Used only when the TimeP Mode is set to Manual. Specifies the IP address of the TimeP server that the switch accesses for time synchronization updates. You can configure one server.</td>
</tr>
<tr>
<td>Poll Interval (minutes)</td>
<td>Default: 720 minutes. Specifies the interval the switch waits between attempts to poll the TimeP server for updates.</td>
</tr>
</tbody>
</table>
Time Protocols
TimeP: Viewing, Selecting, and Configuring

Menu: Viewing and Configuring TimeP

To View, Enable, and Modify the TimeP Protocol:

1. From the Main Menu, select:
   
   2. Switch Configuration...

   1. System Information

---

System Name : ProCurve  
System Contact : 
System Location : 

Inactivity Timeout (min) [0] : 0  MAC Age Time (sec) [300] : 300  

Time Sync Method [None] : TIMEP  
TimeP Mode [Disabled] : Disabled  

Time Zone [0] : 0  
Daylight Time Rule [None] : None  

Actions-> Cancel  Edit  Save  Help  

Cancel changes and return to previous screen.  
Use arrow keys to change action selection and #<Enter> to execute action.

---

Figure 9-12. The System Information Screen (Default Values)

Press [E] (for Edit). The cursor moves to the System Name field.

2. Use ↓ to move the cursor to the Time Sync Method field.

3. If TIMEP is not already selected, use the Space bar to select TIMEP, then press ↓ once to display and move to the TimeP Mode field.

4. Do one of the following:
   
   - Use the Space bar to select the DHCP mode, then press ↑ to move the cursor to the Poll Interval field, and go to step 6.
Use the Space bar to select the **Manual** mode.

i. Press \[\leftarrow\] to move the cursor to the **Server Address** field.

ii. Enter the IP address of the TimeP server you want the switch to use for time synchronization.

   **Note:** This step replaces any previously configured TimeP server IP address.

iii. Press \[\leftarrow\] to move the cursor to the **Poll Interval** field, then go to step 6.

5. In the **Poll Interval** field, enter the time in minutes that you want for a TimeP Poll Interval.

Press \[\text{Enter}\] to return to the Actions line, then \[\text{S}\] (for **Save**) to enter the new time protocol configuration in both the startup-config and running-config files.
CLI: Viewing and Configuring TimeP

CLI Commands Described in this Section

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show timep</td>
<td>9-18</td>
</tr>
<tr>
<td>[no] timesync</td>
<td>9-20 ff., 9-23</td>
</tr>
<tr>
<td>ip timep</td>
<td></td>
</tr>
<tr>
<td>dhcp</td>
<td>9-20</td>
</tr>
<tr>
<td>manual</td>
<td>9-21</td>
</tr>
<tr>
<td>server &lt;ip-addr&gt;</td>
<td>9-21</td>
</tr>
<tr>
<td>interval</td>
<td>9-22</td>
</tr>
<tr>
<td>no ip timep</td>
<td>9-23</td>
</tr>
</tbody>
</table>

This section describes how to use the CLI to view, enable, and configure TimeP parameters.

Viewing the Current TimeP Configuration

Using different show commands, you can display either the full TimeP configuration or a combined listing of all TimeP, SNTP, and VLAN IP addresses configured on the switch.

**Syntax:** show timep

*This command lists both the time synchronization method (TimeP, SNTP, or None) and the TimeP configuration, even if SNTP is not the selected time protocol. (If the TimeP Mode is set to Disabled or DHCP, then the Server field does not appear.)*

For example, if you configure the switch with TimeP as the time synchronization method, then enable TimeP in DHCP mode with the default poll interval, show timep lists the following:

```
ProCurve(config)# show timep
Timep Configuration
Time Sync Mode: Timep
TimeP Mode [Disabled] : DHCP Server Address : 10.10.28.100
Poll Interval (min) [720] : 720
```

Figure 9-13. Example of TimeP Configuration When TimeP Is the Selected Time Synchronization Method
If SNTP is the selected time synchronization method, `show timep` still lists the TimeP configuration even though it is not currently in use:

```
ProCurve(config)# show timep
Timep Configuration
    Time_Sync_Mode: Sntp
    TimeP Mode [Disabled]: Manual    Server Address : 10.10.28.100
    Poll Interval (min) [720] : 720
```

Figure 9-14. Example of TimeP Configuration When TimeP Is Not the Selected Time Synchronization Method

Syntax: `show management`

*This command can help you to easily examine and compare the IP addressing on the switch. It lists the IP addresses for all time servers configured on the switch, plus the IP addresses and default gateway for all VLANs configured on the switch.*

```
ProCurve(config)# show management
Status and Counters - Management Address Information
    Time Server Address : 10.10.28.100
    SNTP Server Address Protocol Version
                      ---------------------------  ---------------------------
                      10.10.28.101    3
                      10.11.35.117    3
                      10.12.115.86    3
    Default Gateway : 10.30.248.1
    VLAN Name     MAC Address     | IP Address
                      ---------------------------  ---------------------------
    DEFAULT_VLAN   0004ea-5e2000  | 10.30.248.184
    VLAN100        0004ea-5e2000  | 10.29.16.105
```

Figure 9-15. Example of Display Showing IP Addressing for All Configured Time Servers and VLANs
Configuring (Enabling or Disabling) the TimeP Mode

Enabling the TimeP mode means to configure it for either broadcast or unicast mode. Remember that to run TimeP as the switch’s time synchronization protocol, you must also select TimeP as the time synchronization method by using the CLI timesync command (or the Menu interface Time Sync Method parameter).

**Syntax:** timesync timep

*Selects TimeP as the time protocol.*

**Syntax:** ip timep < dhcp | manual >

*Enables the selected TimeP mode.*

**Syntax:** no ip timep

*Disables the TimeP mode.*

**Syntax:** no timesync

*Disables the time protocol.*

**Enabling TimeP in DHCP Mode.** Because the switch provides a TimeP polling interval (default: 720 minutes), you need only these two commands for a minimal TimeP DHCP configuration:

**Syntax:** timesync timep

*Selects TimeP as the time synchronization method.*

**Syntax:** ip timep dhcp

*Configures DHCP as the TimeP mode.*

For example, suppose:

- Time synchronization is configured for SNTP.
- You want to:
  1. View the current time synchronization.
  2. Select TimeP as the time synchronization mode.
  3. Enable TimeP for DHCP mode.
  4. View the TimeP configuration.

The commands and output would appear as follows:
Figure 9-16. Example of Enabling TimeP Operation in DHCP Mode

Enabling TimeP in Manual Mode. Like DHCP mode, configuring TimeP for Manual mode enables TimeP. However, for manual operation, you must also specify the IP address of the TimeP server. (The switch allows only one TimeP server.) To enable the TimeP protocol:

**Syntax:** timesync timep

*Selects TimeP.*

**Syntax:** ip timep manual <ip-addr>

*Activates TimeP in Manual mode with a specified TimeP server.*

**Syntax:** no ip timep

*Disables TimeP.*

**Note**

To change from one TimeP server to another, you must (1) use the **no ip timep** command to disable TimeP mode, and then reconfigure TimeP in Manual mode with the new server IP address.

For example, to select TimeP and configure it for manual operation using a TimeP server address of 10.28.227.141 and the default poll interval (720 minutes, assuming the TimeP poll interval is already set to the default):

ProCurve(config)# timesync timep

*Selects TimeP.*

ProCurve(config)# ip timep manual 10.28.227.141

*Activates TimeP in Manual mode.*

ProCurve(config)# show timep

Timep Configuration
  Time Sync Mode: Sntp
  TimeP Mode : Disabled

ProCurve(config)# timesync timep

ProCurve(config)# ip timep dhcp

ProCurve(config)# show timep

Timep Configuration
  Time Sync Mode: Timep
  TimeP Mode : DHCP   Poll Interval (min) : 720
Changing the TimeP Poll Interval. This command lets you specify how long the switch waits between time polling intervals. The default is 720 minutes and the range is 1 to 9999 minutes. (This parameter is separate from the poll interval parameter used for SNTP operation.)

**Syntax:** ip timep < dhcp | manual >  interval < 1 - 9999 >

For example, to change the poll interval to 60 minutes:

```plaintext
ProCurve(config)# ip timep interval 60
```
Disabling Time Synchronization Without Changing the TimeP Configuration. The recommended method for disabling time synchronization is to use the `timesync` command. This halts time synchronization without changing your TimeP configuration.

**Syntax:** `no timesync`

*Disables time synchronization by changing the Time Sync Mode configuration to Disabled.*

For example, suppose TimeP is running as the switch's time synchronization protocol, with **DHCP** as the TimeP mode, and the factory-default polling interval. You would halt time synchronization with this command:

```
ProCurve(config)# no timesync
```

If you then viewed the TimeP configuration, you would see the following:

```
ProCurve(config)# show timep
Timep Configuration
 Time Sync Mode: Disabled
 TimeP Mode : DHCP    Poll Interval (min) : 720
```

**Figure 9-18. Example of TimeP with Time Synchronization Disabled**

Disabling the TimeP Mode. Disabling the TimeP mode means to configure it as disabled. (Disabling TimeP prevents the switch from using it as the time synchronization protocol, even if it is the selected **Time Sync Method** option.)

**Syntax:** `no ip timep`

*Disables TimeP by changing the TimeP mode configuration to Disabled.*

For example, if the switch is running TimeP in DHCP mode, `no ip timep` changes the TimeP configuration as shown below, and disables time synchronization.

```
ProCurve(config)# no ip timep
ProCurve(config)# show timep
Timep Configuration
 Time Sync Mode: Timep
 TimeP Mode : Disabled
```

**Figure 9-19. Example of Disabling Time Synchronization by Disabling the TimeP Mode Parameter**

Even though the **Time Sync Mode** is set to **Timep**, time synchronization is disabled because `no ip timep` has disabled the TimeP Mode parameter.
SNTP Unicast Time Polling with Multiple SNTP Servers

When running SNTP unicast time polling as the time synchronization method, the switch requests a time update from the server you configured with either the Server Address parameter in the menu interface, or the primary server in a list of up to three SNTP servers configured using the CLI. If the switch does not receive a response from the primary server after three consecutive polling intervals, the switch tries the next server (if any) in the list. If the switch tries all servers in the list without success, it sends an error message to the Event Log and reschedules to try the address list again after the configured Poll Interval time has expired.

Address Prioritization

If you use the CLI to configure multiple SNTP servers, the switch prioritizes them according to the decimal values of their IP addresses. That is, the switch compares the decimal value of the octets in the addresses and orders them accordingly, with the lowest decimal value assigned as the primary address, the second-lowest decimal value assigned as the next address, and the third-lowest decimal value as the last address. If the first octet is the same between two of the addresses, the second octet is compared, and so on. For example:

<table>
<thead>
<tr>
<th>SNTP Server IP Address</th>
<th>Server Ranking According to Decimal Value of IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.28.227.141</td>
<td>Primary</td>
</tr>
<tr>
<td>10.28.227.153</td>
<td>Secondary</td>
</tr>
<tr>
<td>10.29.227.100</td>
<td>Tertiary</td>
</tr>
</tbody>
</table>
Displaying All SNTP Server Addresses Configured on the Switch

The System Information screen in the menu interface displays only one SNTP server address, even if the switch is configured for two or three servers. The CLI `show management` command displays all configured SNTP servers on the switch.

```plaintext
ProCurve(config)# show management

Status and Counters - Management Address Information
Time Server Address : Disabled

SNTP Server Address | Protocol Version
-------------------|------------------
10.28.227.141       | 3
10.28.227.153       | 3
10.29.227.100       | 3

Default Gateway     : 15.30.248.1

VLAN Name    | MAC Address     | IP Address
--------------|-----------------|-------------
DEFAULT_VLAN  | 0004ea-5e2000   | 15.30.248.184
VLAN28        | 0004ea-5e2000   | 10.28.227.100
VLAN29        | 0004ea-5e2000   | 10.29.227.53
```

Figure 9-20. Example of How To List All SNTP Servers Configured on the Switch

Adding and Deleting SNTP Server Addresses

**Adding Addresses.** As mentioned earlier, you can configure one SNTP server address using either the Menu interface or the CLI. To configure a second and third address, you must use the CLI. For example, suppose you have already configured the primary address in the above table (10.28.227.141). To configure the remaining two addresses, you would do the following:
Time Protocols
SNTP Unicast Time Polling with Multiple SNTP Servers

Figure 9-21. Example of SNTP Server Address Prioritization

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Protocol Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.28.227.141</td>
<td>3</td>
</tr>
<tr>
<td>10.28.227.153</td>
<td>3</td>
</tr>
<tr>
<td>10.29.227.100</td>
<td>3</td>
</tr>
</tbody>
</table>

**Note**
If there are already three SNTP server addresses configured on the switch, and you want to use the CLI to replace one of the existing addresses with a new one, you must delete the unwanted address before you configure the new one.

**Deleting Addresses.** To delete an address, you must use the CLI. If there are multiple addresses and you delete one of them, the switch re-orders the address priority. (Refer to “Address Prioritization” on page 24.)

**Syntax:** `no sntp server <ip-addr>`

For example, to delete the primary address in the above example (and automatically convert the secondary address to primary):

ProCurve(config)# no sntp server 10.28.227.141
Menu: Operation with Multiple SNTP Server Addresses Configured

When you use the Menu interface to configure an SNTP server IP address, the new address writes over the current primary address, if one is configured. If there are multiple addresses configured, the switch re-orders the addresses according to the criteria described under “Address Prioritization” on page 24. For example, suppose the switch already has the following three SNTP server IP addresses configured.

- 10.28.227.141 (primary)
- 10.28.227.153 (secondary)
- 10.29.227.100 (tertiary)

If you use the Menu interface to add 10.28.227.160, the new prioritized list will be:

<table>
<thead>
<tr>
<th>New Address List</th>
<th>Address Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.28.227.153</td>
<td>New Primary (The former primary, 10.28.227.141 was deleted when you used the menu to add 10.28.227.160.)</td>
</tr>
<tr>
<td>10.28.227.160</td>
<td>New Secondary</td>
</tr>
<tr>
<td>10.29.227.100</td>
<td>Same Tertiary (This address still has the highest decimal value.)</td>
</tr>
</tbody>
</table>

SNTP Messages in the Event Log

If an SNTP time change of more than three seconds occurs, the switch's event log records the change. SNTP time changes of less than three seconds do not appear in the Event Log.
Port Status and Basic Configuration

Contents

Overview  ................................................................. 10-2

Viewing Port Status and Configuring Port Parameters  ........... 10-2

Menu: Port Configuration  ........................................... 10-5

CLI: Viewing Port Status and Configuring Port Parameters ... 10-7

Using the CLI To Enable or Disable Ports and Configure
Port Mode ................................................................. 10-8

Enabling or Disabling Flow Control  ............................... 10-10

Configuring a Broadcast Limit on the Switch .................. 10-13

Configuring ProCurve Auto-MDIX  ................................ 10-13

Web: Viewing Port Status and Configuring Port Parameters ... 10-16

Using Friendly (Optional) Port Names  ........................... 10-17

Configuring and Operating Rules for Friendly Port Names .... 10-17

Configuring Friendly Port Names  ................................ 10-18

Displaying Friendly Port Names with Other Port Data ....... 10-19
Overview

This chapter describes how to view the current port configuration and how to configure ports to non-default settings, including:
- Enable/Disable
- Mode (speed and duplex)
- Flow Control
- Broadcast Limit

Viewing Port Status and Configuring Port Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>viewing port status</td>
<td>n/a</td>
<td>page 10-5</td>
<td>page 10-7</td>
<td>page 10-15</td>
</tr>
<tr>
<td>configuring ports</td>
<td>Refer to Table 10-1 on pages 10-3 thru 10-4</td>
<td>page 10-6</td>
<td>page 10-8</td>
<td>page 10-15</td>
</tr>
<tr>
<td>configuring ProCurve auto-mdix</td>
<td></td>
<td></td>
<td></td>
<td>page 9-11</td>
</tr>
</tbody>
</table>

Note On Connecting Transceivers to Fixed-Configuration Devices

If the switch either fails to show a link between an installed transceiver and another device, or demonstrates errors or other unexpected behavior on the link, check the port configuration on both devices for a speed and/or duplex (mode) mismatch. To check the mode setting for a port on the switch, use either the Port Status screen in the menu interface (page 10-5) or show interfaces brief in the CLI (page 10-7).
### Table 10-1. Status and Parameters for Each Port Type

<table>
<thead>
<tr>
<th>Status or Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td><strong>Yes</strong> (default): The port is ready for a network connection. <strong>No</strong>: The port will not operate, even if properly connected in a network. Use this setting, for example, if the port needs to be shut down for diagnostic purposes or while you are making topology changes.</td>
</tr>
<tr>
<td>Status (read-only)</td>
<td><strong>Up</strong>: The port senses a link beat. <strong>Down</strong>: The port is not enabled, has no cables connected, or is experiencing a network error. For troubleshooting information, refer to the installation manual you received with the switch. Refer also to appendix C, “Troubleshooting” (in this manual).</td>
</tr>
<tr>
<td>Mode</td>
<td>The port’s speed and duplex (data transfer operation) setting.</td>
</tr>
</tbody>
</table>

### 10/100/1000Base-T Ports:

- **Auto-MDIX** (default): Senses speed and negotiates with the port at the other end of the link for port operation (MDI-X or MDI).
  
  To see what the switch negotiates for the Auto setting, use the CLI `show interfaces brief` command or the “3. Port Status” option under “1. Status and Counters” in the menu interface.

- **MDI**: Sets the port to connect with a PC using a crossover cable (Manual mode—applies only to copper port switches using twisted-pair copper Ethernet cables)

- **MDIX**: Sets the port to connect with a PC using a straight-through cable (Manual mode—applies only to copper port switches using twisted-pair copper Ethernet cables)

- **Auto-10**: Allows the port to negotiate between half-duplex (HDx) and full-duplex (FDx) while keeping speed at 10 Mbps. Also negotiates flow control (enabled or disabled). ProCurve recommends Auto-10 for links between 10/100 auto-sensing ports connected with Cat 3 cabling. (Cat 5 cabling is required for 100 Mbps links.).

- **10HDx**: 10 Mbps, Half-Duplex

- **10FDx**: 10 Mbps, Full-Duplex

- **Auto-100**: Uses 100 Mbps and negotiates with the port at the other end of the link for other port operation features.

- **Auto-1000**: Uses 1000 Mbps and negotiates with the port at the other end of the link for other port operation features.

- **100HDx**: Uses 100 Mbps, half-duplex.

- **100FDx**: Uses 100 Mbps, Full-Duplex

— Continued on Next Page —
## Gigabit Fiber-Optic Ports (Gigabit-SX, Gigabit-LX, and Gigabit-LH):
- **1000FDx**: 1000 Mbps (1 Gbps), Full Duplex only
- **Auto** (default): The port operates at 1000FDx and auto-negotiates flow control with the device connected to the port.

## Gigabit Copper Ports:
- **1000FDx**: 1000 Mbps (1 Gbps), Full Duplex only
- **Auto** (default): The port operates at 1000FDx and auto-negotiates flow control with the device connected to the port.

## 10-Gigabit CX4 Copper Ports:
- **Auto**: The port operates at 10 gigabits FDx and negotiates flow control. Lower speed settings or half-duplex are not allowed.

## 10-Gigabit SC Fiber-Optic Ports (10-GbE SR, 10-GbE LR, 10-GbE ER):
- **Auto**: The port operates at 10 gigabits FDx and negotiates flow control. Lower speed settings or half-duplex are not allowed.

### Note:
Conditioning patch cord cables are not supported on 10-GbE.

### Auto-MDIX
The switch supports Auto-MDIX on 10Mb, 100Mb, and 1 Gb T/TX (copper) ports. (Fiber ports and 10-gigabit ports do not use this feature.)
- **Automdix**: Configures the port for automatic detection of the cable type (straight-through or crossover).
- **MDI**: Configures the port to connect to a switch, hub, or other MDI-X device with a straight-through cable.
- **MDIX**: Configures the port to connect to a PC or other MDI device with a straight-through cable.

### Flow Control
- **Disabled** (default): The port does not generate flow control packets, and drops any flow control packets it receives.
- **Enabled**: The port uses 802.3x Link Layer Flow Control, generates flow control packets, and processes received flow control packets.

With the port mode set to **Auto** (the default) and Flow Control enabled, the switch negotiates Flow Control on the indicated port. If the port mode is not set to Auto, or if Flow Control is disabled on the port, then Flow Control is not used. Note that flow control must be enabled on both ends of a link.

### Broadcast Limit
Specifies the percentage of the theoretical maximum network bandwidth that can be used for broadcast and multicast traffic. Any broadcast or multicast traffic exceeding that limit will be dropped. Zero (0) means the feature is disabled.

The broadcast-limit command operates at the global configuration context level to set the broadcast limit for all ports on the switch.

### Note:
This feature is not appropriate for networks that require high levels of IPX or RIP broadcast traffic.
Menu: Port Configuration

From the menu interface, you can view and change the port configuration.

**Using the Menu To View Port Configuration.** The menu interface displays the configuration for ports and (if configured) any trunk groups.

From the Main Menu, select:

1. Status and Counters
2. Port Status

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Intrusion</th>
<th>Enabled</th>
<th>Status</th>
<th>Mode</th>
<th>MDI Mode</th>
<th>Flow Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E2</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E3</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E4</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E5</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E6</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E7-Trk2</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E8-Trk2</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E9</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E10</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
<tr>
<td>E11</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>Auto</td>
<td>Off</td>
</tr>
</tbody>
</table>

Actions—> Back Intrusion log Help

*Return to previous screen.*

Use up/down arrow keys to scroll to other entries. Left/right arrow keys to change action selection, and <Enter> to execute action.

*Figure 10-1. Example of a Series 5400zl Switch Port Status Screen*
Using the Menu To Configure Ports.

Note

The menu interface uses the same screen for configuring both individual ports and port trunk groups. For information on port trunk groups, refer to chapter 12, “Port Trunking”.

1. From the Main Menu, Select:
   2. Switch Configuration...
   2. Port/Trunk Settings

   ![Example of Port/Trunk Settings with a Trunk Group Configured](image)

   **Figure 10-2. Example of Port/Trunk Settings with a Trunk Group Configured**

2. Press [E] (for Edit). The cursor moves to the Enabled field for the first port.
3. Refer to the online help provided with this screen for further information on configuration options for these features.
4. When you have finished making changes to the above parameters, press [Enter], then press [S] (for Save).
CLI: Viewing Port Status and Configuring Port Parameters

Port Status and Configuration Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces brief</td>
<td>10-8</td>
</tr>
<tr>
<td>show interfaces config</td>
<td>10-8</td>
</tr>
<tr>
<td>interface</td>
<td>10-8</td>
</tr>
<tr>
<td>disable/enable</td>
<td>10-8</td>
</tr>
<tr>
<td>speed-duplex</td>
<td>10-8</td>
</tr>
<tr>
<td>flow-control</td>
<td>10-10</td>
</tr>
<tr>
<td>broadcast-limit</td>
<td>10-12</td>
</tr>
<tr>
<td>auto-mdix</td>
<td>10-12</td>
</tr>
</tbody>
</table>

From the CLI, you can configure and view all port parameter settings and view all port status indicators.

Using the CLI To View Port Status. Use the following commands to display port status and configuration.

**Syntax:** show interfaces [brief | config | <port-list>]

- **brief:** Lists the current operating status for all ports on the switch.
- **config:** Lists a subset of configuration data for all ports on the switch; that is, for each port, the display shows whether the port is enabled, the operating mode, and whether it is configured for flow control.
- **<port-list>** Shows a summary of network traffic handled by the specified ports.

The next two figures list examples of the output of the above two command options for the same port configuration.
Using the CLI To Enable or Disable Ports and Configure Port Mode

You can configure one or more of the following port parameters. For details, refer to table 10-1 on pages 10-3 thru 10-4.

Syntax:  [no] interface < port-list >

[< disable | enable >]

Disables or enables the port for network traffic. Does not use the no form of the command. (Default: enable.)

[speed-duplex < auto-10 | 10-full | 10-half | 100-full | 100-half | lautol | auto-100 | 1000-full >]

Specifies the port’s data transfer speed and mode. Does not use the no form of the command. (Default: auto.)
Port Status and Basic Configuration
Viewing Port Status and Configuring Port Parameters

Note that in the above syntax you can substitute an “int” for “interface”; that is: int < port-list >.

For example, to configure ports C1 through C3 and port C6 for 100Mbps full-duplex, you would enter these commands:

```
ProCurve(config)# int c1-c3,c6 speed-duplex 100-full
```

Similarly, to configure a single port with the above command settings, you could either enter the same command with only the one port identified, or go to the context level for that port and then enter the command. For example, to enter the context level for port C6 and then configure that port for 100FDx:

```
ProCurve(config)# int e c6
ProCurve(eth-C6)# speed-duplex 100-full
```

If port C8 was disabled, and you wanted to enable it and configure it for 100FDx with flow-control active, you could do so with either of the following command sets.

```
ProCurve(config)# int c8 enable
ProCurve(config)# int c8 speed-duplex 100-full
ProCurve(config)# int c8 flow-control
ProCurve(config)# int c8 enable
ProCurve(config)# int c8 speed-duplex 100-full
```

```
ProCurve(config)# int c8 enable
ProCurve(config)# int c8 speed-duplex 100-full
```

Figure 10-5. Examples of Two Methods for Changing a Port Configuration

Refer to “Enabling or Disabling Flow Control” on page 10-10 for more on flow control.
Enabling or Disabling Flow Control

**Note**

You must enable flow control on both ports in a given link. Otherwise, flow control does not operate on the link, and appears as **Off** in the **show interfaces brief** port listing, even if flow control is configured as enabled on the port in the switch. (Refer to figure 10-3 on page 10-8.) Also, the port (speed-duplex) mode must be set to **Auto** (the default).

To disable flow control on some ports, while leaving it enabled on other ports, just disable it on the individual ports you want to exclude.

**Syntax:**

```
[ no ] interface < port-list > flow-control
```

Enables or disables flow control packets on the port. The **no** form of the command disables flow control on the individual ports. (Default: Disabled.)

For example, suppose that:

2. Later, you decide to disable flow control on ports A5 and A6.
3. As a final step, you want to disable flow control on all ports.

Assuming that flow control is currently disabled on the switch, you would use these commands:

```
ProCurve(config)# int a1-a6 flow-control
ProCurve(config)# show interfaces brief
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Intrusion</th>
<th>Alert</th>
<th>Enabled</th>
<th>Status</th>
<th>Mode</th>
<th>Flow Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10HDX</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>10FDX</td>
<td>off</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10-6. Example of Configuring Flow Control for a Series of Ports
### Viewing Port Status and Configuring Port Parameters

#### Port Status and Basic Configuration

**ProCurve(config)# no int a5-a6 flow-control**

**ProCurve(config)# show interfaces brief**

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Intrusion</th>
<th>Alert</th>
<th>Enabled</th>
<th>Status</th>
<th>Mode</th>
<th>Flow Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>10HDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
</tbody>
</table>

---

**Figure 10-7. Example Continued from Figure 10-6**

### Status and Counters - Port Status

#### Disables per-port flow control on ports A5 and A6.

**ProCurve(config)# no int a1-a4 flow-control**

**ProCurve(config)# show interfaces brief**

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Intrusion</th>
<th>Alert</th>
<th>Enabled</th>
<th>Status</th>
<th>Mode</th>
<th>Flow Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>10HDx</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10FDx</td>
<td>off</td>
<td></td>
</tr>
</tbody>
</table>

---

**Figure 10-8. Example Continued from Figure 10-7**

- Disables per-port flow control on ports A1 through A4. Flow control is now disabled on the switch.
- Ports formerly configured for flow control.
Configuring a Broadcast Limit on the Switch

Broadcast-Limit on switches covered in this guide is configured globally (on all ports) as a fixed limit.

**Broadcast-Limit.**

Syntax: `[no] broadcast-limit

Enables or disables broadcast limiting for outbound broadcasts on all ports on the switch. When enabled, this command limits outbound broadcast packets to 1,000 per second on each port, regardless of packet size.

*Note:* This feature is not appropriate for networks requiring high levels of IPX or RIP broadcast traffic.

Syntax: `show config`

Displays the startup-config file. The broadcast limit setting appears here if enabled and saved to the startup-config file.

Syntax: `show running-config`

Displays the running-config file. The broadcast limit setting appears here if enabled. If the setting is not also saved to the startup-config file, rebooting the switch returns broadcast limit to the setting currently in the startup-config file.

For example, the following command enables broadcast limiting on all ports on the switch:

ProCurve(config)# broadcast-limit

Configuring ProCurve Auto-MDIX

Copper ports on the switch can automatically detect the type of cable configuration (MDI or MDI-X) on a connected device and adjust to operate appropriately.

This means you can use a “straight-through” twisted-pair cable or a “cross-over” twisted-pair cable for any of the connections—the port makes the necessary adjustments to accommodate either one for correct operation. The following port types on your switch support the IEEE 802.3ab standard, which includes the “Auto MDI/MDI-X” feature:

- 10/100-TX xe module ports
- 100/1000-T xe module ports
- 10/100/1000-T xe module ports
Using the above ports:

- If you connect a copper port using a straight-through cable on a switch to a port on another switch or hub that uses MDI-X ports, the switch port automatically operates as an MDI port.
- If you connect a copper port using a straight-through cable on a switch to a port on an end node, such as a server or PC, that uses MDI ports, the switch port automatically operates as an MDI-X port.

ProCurve Auto-MDIX was developed for auto-negotiating devices, and was shared with the IEEE for the development of the IEEE 802.3ab standard. ProCurve Auto-MDIX and the IEEE 802.3ab Auto MDI/MID-X feature are completely compatible. Additionally, ProCurve Auto-MDIX supports operation in forced speed and duplex modes.

If you want more information on this subject please refer to the *IEEE 802.3ab Standard Reference*.

For more information on MDI-X, refer to the appendix titled “Switch Ports and Network Cables” in the *Installation and Getting Started Guide* for your switch.

**Manual Override.** If you require control over the MDI/MDI-X feature you can set the switch to either of two non-default modes:

- Manual MDI
- Manual MDI-X

Table 10-2 shows the cabling requirements for the MDI/MDI-X settings.

**Table 10-2. Cable Types for Auto and Manual MDI/MDI-X Settings**

<table>
<thead>
<tr>
<th>Setting</th>
<th>PC or Other MDI Device Type</th>
<th>Switch, Hub, or Other MDI-X Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual MDI</td>
<td>Crossover Cable</td>
<td>Straight-Through Cable</td>
</tr>
<tr>
<td>Manual MDI-X</td>
<td>Straight-Through Cable</td>
<td>Crossover Cable</td>
</tr>
<tr>
<td>Auto-MDI-X</td>
<td>Either Crossover or Straight-Through Cable</td>
<td></td>
</tr>
</tbody>
</table>
The Auto-MDIX features apply only to copper port switches using twisted-pair copper Ethernet cables.

**Syntax:** interface <port-list> mdix-mode <auto-mdix | mdi | mdix>

- **auto-mdix** is the automatic, default setting. This configures the port for automatic detection of the cable (either straight-through or crossover).
- **mdi** is the manual mode setting that configures the port for connecting to either a PC or other MDI device with a crossover cable, or to a switch, hub, or other MDI-X device with a straight-through cable.
- **mdix** is the manual mode setting that configures the port for connecting to either a switch, hub, or other MDI-X device with a crossover cable, or to a PC or other MDI device with a straight-through cable.

**Syntax:** show interfaces config

Lists the current per-port Auto/MDI/MDI-X configuration.

**Syntax:** show interfaces brief

Where a port is linked to another device, this command lists the MDI mode the port is currently using. In the case of ports configured for **Auto** (auto-mdix), the MDI mode appears as either **MDI** or **MDIX**, depending upon which option the port has negotiated with the device on the other end of the link. In the case of ports configured for **MDI** or **MDIX**, the mode listed in this display matches the configured setting. If the link to another device was up, but has gone down, this command shows the last operating MDI mode the port was using. If a port on a given switch has not detected a link to another device since the last reboot, this command lists the MDI mode to which the port is currently configured.

For example, **show interfaces config** displays the following data when port A1 is configured for **auto-mdix**, port A2 is configured for **mdi**, and port A3 is configured for **mdix**.
Port Status and Basic Configuration

Viewing Port Status and Configuring Port Parameters

Web: Viewing Port Status and Configuring Port Parameters

In the web browser interface:

1. Click on the Configuration tab.
2. Click on [Port Configuration].
3. Select the ports you want to modify and click on [Modify Selected Ports].
4. After you make the desired changes, click on [Apply Settings].

Note that the web browser interface displays an existing port trunk group. However, to configure a port trunk group, you must use the CLI or the menu interface. For more on this topic, refer to chapter 12, “Port Trunking”.

ProCurve(config)# show interfaces config

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Enabled Mode</th>
<th>Flow Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10/100TX</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>A2</td>
<td>10/100TX</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>A3</td>
<td>10/100TX</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>A4</td>
<td>10/100TX</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>A5</td>
<td>10/100TX</td>
<td>Yes</td>
<td>Auto</td>
</tr>
</tbody>
</table>

Per-Port MDI Configuration

Figure 10-9. Example of Displaying the Current MDI Configuration

ProCurve(config)# show interfaces brief

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Intrusion</th>
<th>Enabled</th>
<th>Status Mode</th>
<th>Flow Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>100F Dx</td>
</tr>
<tr>
<td>A2</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>100F Dx</td>
</tr>
<tr>
<td>A3</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>100F Dx</td>
</tr>
<tr>
<td>A4</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10F Dx</td>
</tr>
<tr>
<td>A5</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>10F Dx</td>
</tr>
</tbody>
</table>

Per-Port MDI Operating Mode

Figure 10-10. Example of Displaying the Current MDI Operating Mode
Using Friendly (Optional) Port Names

This feature enables you to assign alphanumeric port names of your choosing to augment automatically assigned numeric port names. This means you can configure meaningful port names to make it easier to identify the source of information listed by some `show` commands. (Note that this feature augments port numbering, but does not replace it.)

Configuring and Operating Rules for Friendly Port Names

- At either the global or context configuration level you can assign a unique name to a port. You can also assign the same name to multiple ports.

- The friendly port names you configure appear in the output of the `show name [port-list]`, `show config`, and `show interface <port-number>` commands. They do not appear in the output of other show commands or in Menu interface screens. (Refer to “Displaying Friendly Port Names with Other Port Data” on page 10-18.)

- Friendly port names are not a substitute for port numbers in CLI commands or Menu displays.

- Trunking ports together does not affect friendly naming for the individual ports. (If you want the same name for all ports in a trunk, you must individually assign the name to each port.)

- A friendly port name can have up to 64 contiguous alphanumeric characters.

- Blank spaces within friendly port names are not allowed, and if used, cause an invalid input error. (The switch interprets a blank space as a name terminator.)

- In a port listing, not assigned indicates that the port does not have a name assignment other than its fixed port number.

- To retain friendly port names across reboots, you must save the current running-configuration to the startup-config file after entering the friendly port names. (In the CLI, use the `write memory` command.)
Configuring Friendly Port Names

**Syntax:** interface <port-list> name <port-name-string>

Assigns a port name to port-list.

**Syntax:** no interface <port-list> name

Deletes the port name from port-list.

**Configuring a Single Port Name.** Suppose that you have connected port A3 on the switch to Bill Smith’s workstation, and want to assign Bill’s name and workstation IP address (10.25.101.73) as a port name for port A3:

```
ProCurve(config)# int A3 name Bill_Smith@10.25.101.73
ProCurve(config)# write mem
ProCurve(config)# show name A3

Port Names
  Port : A3
    Type : 10/100TX
    Name : Bill_Smith@10.25.101.73
```

Figure 10-11. Example of Configuring a Friendly Port Name

**Configuring the Same Name for Multiple Ports.** Suppose that you want to use ports A5 through A8 as a trunked link to a server used by a drafting group. In this case you might configure ports A5 through A8 with the name “Draft-Server:Trunk”:

```
ProCurve(config)# int A5-A8 name Draft-Server:Trunk
ProCurve(config)# write mem
ProCurve(config)# show name 5-8

Port Names
  Port : A5
    Type : 10/100TX
    Name : Draft-Server:Trunk
  Port : A6
    Type : 10/100TX
    Name : Draft-Server:Trunk
  Port : A7
    Type : 10/100TX
    Name : Draft-Server:Trunk
  Port : A8
    Type : 10/100TX
    Name : Draft-Server:Trunk
```

Figure 10-12. Example of Configuring One Friendly Port Name on Multiple Ports
Displaying Friendly Port Names with Other Port Data

You can display friendly port name data in the following combinations:

- **show name**: Displays a listing of port numbers with their corresponding friendly port names and also quickly shows you which ports do not have friendly name assignments. (*show name* data comes from the running-config file.)

- **show interface <port-number>**: Displays the friendly port name, if any, along with the traffic statistics for that port. (The friendly port name data comes from the running-config file.)

- **show config**: Includes friendly port names in the per-port data of the resulting configuration listing. (*show config* data comes from the startup-config file.)

To List All Ports or Selected Ports with Their Friendly Port Names.

This command lists names assigned to a specific port.

**Syntax:** `show name [port-list]`

Lists the friendly port name with its corresponding port number and port type. The *show name* command without a port list shows this data for all ports on the switch.

For example:

```
ProCurve(config)# show name
Port Type Name                  
----- ----- ----------------------
  A1  10/100TX not assigned         
  A2  10/100TX not assigned         
  A3  10/100TX Bill_Smith#10.25.101.73 
  A4  10/100TX not assigned         
  A5  10/100TX Draft-Server:Trunk  
  A6  10/100TX Draft-Server:Trunk  
  A7  10/100TX Draft-Server:Trunk  
  A8  10/100TX Draft-Server:Trunk  
  A9  10/100TX not assigned         
 A10 10/100TX not assigned         
 A11 10/100TX not assigned         
 A12 10/100TX not assigned         
```

*Figure 10-13. Example of Friendly Port Name Data for All Ports on the Switch*
Port Status and Basic Configuration
Using Friendly (Optional) Port Names

Including Friendly Port Names in Per-Port Statistics Listings. A friendly port name configured to a port is automatically included when you display the port’s statistics output.

Syntax: show interface < port-number >
Includes the friendly port name with the port’s traffic statistics listing.

For example, if you configure port A1 with the name “O’Connor_10.25.101.43”, the show interface output for this port appears similar to the following:

```
ProCurve(config)# show interface A1
Status and Counters - Port Counters for port A1
Name : O’Connor@10.25.101.43
Link Status : Up
Bytes Rx : 894,568 Bytes Tx : 2470
Unicast Rx : 1179 Unicast Tx : 13
Bcast/Mcast Rx : 5280 Bcast/Mcast Tx : 13
FCS Rx : 36 Drops Tx : 0
Alignment Rx : 2 Collisions Tx : 0
Runts Rx : 0 Late Colln Tx : 0
Giants Rx : 0 Excessive Colln : 0
Total Rx Errors : 38 Deferred Tx : 0
```
For a given port, if a friendly port name does not exist in the running-config file, the Name line in the above command output appears as:

Name : not assigned

To Search the Configuration for Ports with Friendly Port Names.

This option tells you which friendly port names have been saved to the startup-config file. (show config does not include ports that have only default settings in the startup-config file.)

**Syntax:** show config

Includes friendly port names in a listing of all interfaces (ports) configured with non-default settings. Excludes ports that have neither a friendly port name nor any other non-default configuration settings.

For example, if you configure port A1 with a friendly port name:

```plaintext
ProCurve(config)# int A1 name Print Server@10.25.101.43
ProCurve(config)# write mem
ProCurve(config)# int A2 name Herbert's PC
ProCurve(config)# show config
```

Startup configuration:

```
; J4850A Configuration Editor; Created on release #E.08.30
hostname "HPswitch"
time daylight-time-rule None
no cdp run
interface A1
    name "Print_Server@10.25.101.43"
exit
```

snmp-server community "public" Unrestricted

```
   vlan 1
      name "DEFAULT_VLAN"
      untagged 1-24
      ip address dhcp-bootp
      exit
```

no aaa port-access authenticator active

**Figure 10-16. Example Listing of the Startup-Config File with a Friendly Port Name Configured (and Saved)**
Port Status and Basic Configuration
Using Friendly (Optional) Port Names
Power Over Ethernet (PoE) Operation

Contents

PoE Devices .......................................................... 11-3
    PoE on Series 5400zl Switches ................................. 11-3
    PoE on Series 3500yl Switches ................................. 11-3

Introduction to PoE ................................................. 11-4
    Overview of Operation for Series 3500yl Switches ........ 11-5
    Overview of Operation for Series 5400zl Switches ........ 11-5

Related Publications ............................................... 11-6

General PoE Operation ............................................. 11-7
    Configuration Options for the Series 5400zl Switches ...... 11-7
    PD Support .......................................................... 11-8
    Determining the Amount of PoE Power Available ............ 11-9
    Power Priority Operation ....................................... 11-10
        When Is Power Allocation Prioritized? ..................... 11-10
        How Is Power Allocation Prioritized? ....................... 11-10
        PoE Priority With Two or More Modules .................... 11-11

Configuring PoE Operation ....................................... 11-13
    Changing the PoE Port Priority Level ......................... 11-13
    Disabling or Re-Enabling PoE Port Operation ................. 11-14
    Enabling Support for Pre-Standard Devices .................. 11-14
    Changing the Threshold for Generating a Power Notice .... 11-15
    Configuring Optional PoE Port Identifiers ................... 11-16

Viewing PoE Configuration and Status ........................ 11-19
    Displaying the Switch’s Global PoE Power Status .......... 11-19
    Displaying an Overview of PoE Status on All Ports ........ 11-20
    Displaying the PoE Status on Specific Ports .............. 11-21

Planning and Implementing a PoE Configuration ............ 11-23
    Assigning PoE Ports to VLANs ................................. 11-23
    Applying Security Features to PoE Configurations ........ 11-23
    Assigning Priority Policies to PoE Traffic ................ 11-24
Power Over Ethernet (PoE) Operation

Contents

Calculating the Maximum Load for a PoE Module .................. 11-25
When a Power Supply Fails ........................................ 11-26

PoE Operating Notes ................................................. 11-27
PoE Event Log Messages ............................................ 11-28
  “Informational” PoE Event-Log Messages ......................... 11-28
  “Warning” PoE Event-Log Messages ............................... 11-29
PoE Devices

The Power Over Ethernet (PoE) features described operate on the Series 5400zl and Series 3500yl switches.

PoE on Series 5400zl Switches

The Series 5400zl switches are used as a Power Sourcing Equipment (PSE) device providing PoE power to the Powered Devices (PDs) through the 24 Gig-T PoE module (J8702A), or the 20-port Gig-T plus 4 mini-GBIC PoE module (J8705A). The switch must have at least one of the following power supplies installed:

- ProCurve J8712A Power Supply providing 273 watts of PoE power
- ProCurve J8713A Power Supply providing 900 watts of PoE power

For information about the power supply specifications refer to the ProCurve Switch zl Internal Power Supplies Installation Guide provided with your power supply.

PoE on Series 3500yl Switches

There are two Series 3500yl switches that are used as PSE devices to provide PoE power thru the RJ-45 ports:

- Switch 3500yl-24G-PWR supplies up to 398 watts of PoE power distributed across 24 RJ-45 ports.
- Switch 3500yl-48G-PWR supplies up to 398 watts of PoE power distributed across 48 RJ-45 ports.

The Series 3500yl switches have four dual-personality Gigabit uplink ports that have either auto-sensing 10/100/1000Base-T RJ-45 ports or mini-GBIC connectivity. The mini-GBIC ports do not support PoE.
Introduction to PoE

PoE technology allows IP telephones, wireless LAN access points, and other appliances to receive power and transfer data over existing ethernet LAN cabling. For more information about PoE technology, refer to the PoE Planning and Implementation Guide, which is available on the ProCurve Networking web site at www.procurve.com. (Click on technical support, then Product manuals (all)).

PoE Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Use in this Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>active PoE port</td>
<td>A PoE-enabled port connected to a PD requesting power.</td>
</tr>
<tr>
<td>priority class</td>
<td>Refers to the type of power prioritization where a PoE module uses Low (the default), High, and Critical priority assignments to determine which groups of ports will receive power. Note that power priority rules apply only if PoE provisioning becomes oversubscribed.</td>
</tr>
<tr>
<td>MPS</td>
<td>Maintenance Power Signature; the signal a PD sends to the switch to indicate that the PD is connected and requires power. Refer to Figure 11-4 on page 11-22.</td>
</tr>
<tr>
<td>Over-Subscribe</td>
<td>The state of a J8702A PoE module where there are more PDs requesting PoE power than the module has power to accommodate.</td>
</tr>
<tr>
<td>PD</td>
<td>Powered Device. This is an IEEE 802.3af-compliant device that receives its power through a direct connection to a Gig-T PoE port in a PoE module. Examples of PDs include Voice-over-IP (VoIP) telephones, wireless access points, and remote video cameras.</td>
</tr>
<tr>
<td>port-number priority</td>
<td>Refers to the type of power prioritization where, within a priority class, a PoE module assigns the highest priority to the lowest-numbered port in the module, the second-highest priority to the second lowest-numbered port in the module, and so-on. Note that power priority rules apply only if PoE provisioning on the module becomes oversubscribed.</td>
</tr>
<tr>
<td>PoE</td>
<td>Power-Over-Ethernet; the method by which PDs receive power from a PoE module (in compliance with the IEEE 802.3AF standard). Some pre-standard PoE devices are also supported; refer to the FAQs for your switch model.</td>
</tr>
<tr>
<td>PSE</td>
<td>Power-Sourcing Equipment. A PSE, such as a J8702A PoE module installed in a ProCurve Series 5400zl switch, provides power to IEEE 802.3AF-compliant PDs directly connected to the ports on the module. The PoE module is an endpoint PSE.</td>
</tr>
<tr>
<td>PoE Module</td>
<td>Refers to a PoE Module (J8702A) for the Series 5400zl switches.</td>
</tr>
</tbody>
</table>
Overview of Operation for Series 3500yl Switches

The Series 3500yl switches are PSE devices that come equipped with a power supply that provide 398 watts of PoE power distributed over 24 RJ-45 ports in the 3500yl-24G-PWR switch and 48 RJ-45 ports in the 3500yl-48G-PWR switch. The switches also have four dual-personality Gigabit uplink ports that have either auto-sensing 10/100/1000Base-T RJ-45 ports or mini-GBIC connectivity. If any of the dual-personality ports are used with mini-GBIC connectivity, the corresponding RJ-45 port is not supplied with PoE power. The unused PoE power is returned to the pool of available power for use elsewhere. For more information about PoE implementation on Series 3500yl devices, refer to the PoE Planning and Implementation Guide, which is available from the ProCurve Networking web site at www.procurve.com. (Click on technical support, then Product manuals (all)).

Overview of Operation for Series 5400zl Switches

A Series 5400zl 24-port Gig-T PoE module (J8702A) is a PSE device that receives PoE power from either a ProCurve J8712A Power Supply or a ProCurve J8713A Power Supply and distributes this power to the PDs connected to the PoE module’s Gig-T ports.

---

**Note**

ProCurve recommends using like power supplies in order to guarantee remaining power if one power supply should fail. For example, use two J8712A power supplies or two J8713A power supplies in your Series 5400zl switch.

**Note**

You can connect either a PoE device (PD) or a non-PoE device to a port configured for PoE operation on a J8702A PoE module.

Using the commands described in this chapter, you can:

- Configure a non-default power threshold for SNMP and Event Log reporting of PoE consumption on either all PoE ports on the switch or on all PoE ports in one or more PoE modules.

- Specify the port priority you want to use for provisioning PoE power in the event that the PoE resources become oversubscribed.

- Enable or disable PoE operation on individual ports. (In the default configuration, each PoE module installed in the switch enables PoE power on all Gig-T ports in the module, subject to PoE priority if the PoE resources are oversubscribed.)
Monitor PoE status and performance per module.

Related Publications

This chapter introduces general PoE operation, PoE configuration and monitoring commands, and Event Log messages related to PoE operation on ProCurve Series 5400zl and ProCurve Series 3500yl switches. The following two manuals provide further information:

- For information on installing a ProCurve Switch 5400zl 24-port Gig-T PoE Module (J8702A), refer to the *ProCurve Switch Modules Installation Guide* provided with the module.

- To help you plan and implement a PoE system in your network, refer to the *PoE Planning and Implementation Guide*, which is available on the ProCurve Networking web site at www.procurve.com. (Click on technical support, then Product manuals (all).)

The latest version of any ProCurve product guide is always on the ProCurve Networking web site. Refer to “Getting Documentation From the Web” on page 1-7.
General PoE Operation

The CLI commands discussed in this chapter apply to both the Series 5400zl and Series 3500yl switches. For additional PoE configuration information for the Series 5400zl and Series 3500yl switches, refer to the PoE Planning and Implementation Guide, which is available from the ProCurve Networking web site at www.procurve.com. (Click on technical support, then Product manuals (all)).

Configuration Options for the Series 5400zl Switches

In the default configuration, all Gig-T ports on the PoE module in a Series 5400zl switch are configured to support PoE operation. You can:

■ Disable or re-enable per-port PoE operation on individual ports to help control power usage and avoid oversubscribing PoE resources.

■ Configure per-port priority for allocating power in case a PoE module becomes oversubscribed and must drop power for some lower-priority ports to support the demand on other, higher-priority ports.

■ Configure one of the following:
  • A global power threshold that applies to all modules on the switch. This setting acts as a trigger for sending a notice when the PoE power consumption on any PoE module installed in the switch crosses the configured global threshold level. (Crossing the threshold level in either direction—PoE power usage either increasing or decreasing—triggers the notice.) The default setting is 80%.
  • A per-slot power threshold that applies to an individual PoE module installed in the designated slot. This setting acts as a trigger for sending a notice when the module in the specified slot exceeds or goes below a specific level of PoE power consumption.
**Note**

The ports on a PoE module support standard networking links and PoE links. Thus, you can connect either a non-PoE device or a PD to a PoE-enabled port without reconfiguring the port.

**PD Support**

When you connect the first PD to a PoE port, the PoE module must have a minimum of 17 watts of PoE power available in order to detect and supply power to the device. Power is allocated dynamically among PoE modules, with each PoE module allocated a minimum of 22 watts of PoE power—17 watts for detection and an additional 5 watts for variations in any applied power loads. To best utilize the allocated PoE power, spread your connected PoE devices as evenly as possible across modules.

Depending on the amount of power the power supply device delivers to a PoE module, there may or may not always be enough power available to connect and support PoE operation on all 24 Gig-T ports in the module. When a new PD connects to a PoE module and the module does not have enough power left for that port:

- If the new PD connects to a port “X” having a *higher* PoE priority than another port “Y” that is already supporting another PD, then the power is removed from port “Y” and delivered to port “X”. In this case the PD on port “Y” loses power and the PD on port “X” receives power.
- If the new PD connects to a port “X” having a *lower* priority than all other PoE ports currently providing power to PDs, then power is not supplied to port “X” until one or more PDs using higher priority ports are removed.

Note that once a PD connects to a PoE port and begins operating, the port retains only enough PoE power to support the PD’s operation. Unneeded power becomes available for supporting other PD connections. Thus, while 17 watts must be available for a PoE module on the switch to begin supplying power to a port with a PD connected, 17 watts per port is not continually required if the connected PD requires less power. For example, with 20 watts of PoE power remaining available on a module, you can connect one new PD without losing power to any currently connected PDs on that module. If that PD draws only 3 watts, then 17 watts remain available and you can connect at least one more PD to that module without interrupting power to any other PoE devices connected to the same module. If the next PD you connect draws 5 watts, then only 12 watts remain unused. With only 12 unused watts available, if you then connect yet another PD to a higher-priority PoE port, then the lowest-priority port on the module loses PoE power and remains unpowered until the module once again has 17 or more watts available. (For information on power priority, refer to “Power Priority Operation” on page 11-10.)
Disconnecting a PD from a PoE port causes the module to stop providing PoE power to that port and makes the power available to any other PoE ports that have PDs connected and waiting for power. If the PD demand for power becomes greater than the PoE power available, then power is transferred from the lower-priority ports to the higher-priority ports. (Ports not currently providing power to PDs are not affected.)

**Determining the Amount of PoE Power Available**

Table 11-1 shows the amount of PoE power available for powering PDs depending on the power supplies used.

**Table 11-1. PoE Power Available**

<table>
<thead>
<tr>
<th>Source of Power</th>
<th>PoE Power Available</th>
<th>PoE Power Available for the PoE (J8702A) Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>One power supply</td>
<td>J8712A Power Supply=273 watts</td>
<td>Depending on the power demand from the PDs, lower priority ports may not be provisioned. Refer to “Calculating the Maximum Load for a PoE Module” on page 11-25.</td>
</tr>
<tr>
<td></td>
<td>J8713A Power Supply=900 watts</td>
<td></td>
</tr>
<tr>
<td>Two power supplies of the same type (recommended)</td>
<td>Two J8712A Power Supplies=546 watts or Two J8713A Power Supplies=1800 watts</td>
<td></td>
</tr>
<tr>
<td>Two power supplies of different types (not recommended)</td>
<td>One J8712A power supply + one J8713 power supply=1173 watts</td>
<td></td>
</tr>
</tbody>
</table>
Power Priority Operation

When Is Power Allocation Prioritized?

If a PSE can provide power for all connected PD demand, it does not use its power priority settings to allocate power. However, if the PD power demand oversubscribes the available power, then the power allocation is prioritized to the ports that present a PD power demand. This causes the loss of power from one or more lower-priority ports to meet the power demand on other, higher-priority ports. This operation occurs regardless of the order in which PDs connect to the module’s PoE-enabled ports.

How Is Power Allocation Prioritized?

There are two ways that PoE power is prioritized:

- Using a *priority class* method, a power priority of **Low** (the default), **High**, or **Critical** is assigned to each enabled PoE port.

- Using a *port-number priority* method, a lower-numbered port has priority over a higher-numbered port within the same configured priority class, for example, port A1 has priority over port A5 if both are configured with **High** priority.

Suppose, for example, that you configure the PoE priority for a module in slot C as shown in table 11-2.
Power Over Ethernet (PoE) Operation
General PoE Operation

Table 11-2. Example of PoE Priority Operation on a PoE Module

<table>
<thead>
<tr>
<th>Port</th>
<th>Priority Setting</th>
<th>Configuration Command(^1) and Resulting Operation with PDs connected to Ports C3 Through C24</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 - C17</td>
<td>Critical</td>
<td>In this example, the following CLI command sets ports C3-C17 to <strong>Critical:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ProCurve(config)# interface c3-c17 power critical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <strong>Critical</strong> priority class always receives power. If there is not enough power to provision</td>
</tr>
<tr>
<td>C18 - C21</td>
<td>High</td>
<td>In this example, the following CLI command sets ports C19-C22 to <strong>High:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ProCurve(config)# interface c19-c22 power high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <strong>High</strong> priority class receives power only if all PDs on ports with a <strong>Critical</strong> priority</td>
</tr>
<tr>
<td>C22 - C24</td>
<td>Low</td>
<td>In this example, the CLI command sets ports C23-C24 to <strong>Low</strong>(^2):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ProCurve(config)# interface c23-c24 power low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This priority class receives power only if all PDs on ports with <strong>High</strong> and <strong>Critical</strong> priority</td>
</tr>
<tr>
<td>C1 - C2</td>
<td>- n/a -</td>
<td>In this example, the CLI command disables PoE power on ports C1-C2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ProCurve(config)# no interface c1-c2 power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>There is no priority setting for the ports in this example.</td>
</tr>
</tbody>
</table>

\(^1\) For a listing of PoE configuration commands, with descriptions, refer to “Configuring PoE Operation” on page 11-13.

\(^2\) In the default PoE configuration, the ports are already set to the **low** priority. In this case, the command is not necessary.

PoE Priority With Two or More Modules

Ports across two or more modules can be assigned a class priority of either **Low** (the default), **High**, or **Critical**, for example, A5, B7, and C10 could all be assigned a priority class of **Critical**. When power is allocated to the ports on a priority basis, the **Critical** priority power requests are allocated to module A first, then Module B, C, and so on. Next, the **High** priority power requests are allocated starting with module A, then B, C, and the remaining modules in
Power Over Ethernet (PoE) Operation

General PoE Operation

order. Any remaining power is allocated in the same manner for the **Low** priority ports, beginning with module A though the remaining modules. If there is not enough PoE power for all the PDs connected to PoE modules in the switch, power is allocated according to priority class across modules. For example:

All ports on module C are prioritized as **Critical**.

ProCurve(config)# interface c1-c24 power critical

All ports on module A are prioritized as **Low**.

ProCurve(config)# interface a1-a24 power low

There are 48 PDs attached to all ports of modules A and C (24 ports each module).

There is only enough PoE power for 32 ports (8.5 watts x 32 ports = 273 watts).

The result is that all the **Critical** priority ports on module C would receive power, but only 8 ports on module A would receive power.

On module A, the port A1 has the highest priority of the ports in that module if all ports are in the same priority class, which is the case for this example. Since a minimum 17 + 5 watts of power is allocated per PoE module, port A1 will always receive PoE power. If another port on module A had a higher priority class than port A1, that port would be allocated the power before port A1.
Configuring PoE Operation

In the default configuration, PoE support is enabled on the Gig-T ports in a PoE module installed on the switch. The default priority for all ports is **Low** and the default power notification threshold is **80 (%)**. Using the CLI, you can:

- Change the PoE priority level on individual PoE ports
- Disable or re-enable PoE operation on individual PoE ports
- Change the threshold for generating a power level notice

Changing the PoE Port Priority Level

**Syntax:** interface < port-list > power [ critical | high | low ]

Reconfigures the PoE priority level on < port-list >. For a given level, ports are prioritized by port number in ascending order. For example, if ports A1-A24 have a priority level of critical, port A1 has priority over ports A2-A24.

If there is not enough power available to provision all active PoE ports at a given priority level, then the lowest-numbered port at that level will be provisioned first, starting with module A, then B, C, and so on. PoE priorities are invoked only when all active PoE ports cannot be provisioned (supplied with PoE power).

- **Critical:** Specifies the highest-priority PoE support for < port-list >. The active PoE ports at this level are provisioned before the PoE ports at any other level are provisioned.

- **High:** Specifies the second priority PoE support for < port-list >. The active PoE ports at this level are provisioned before the Low priority PoE ports are provisioned.

- **Low** (the default): Specifies the third priority PoE support for < port-list >. The active PoE ports at this level are provisioned only if there is power available after provisioning any active PoE ports at the higher priority levels.

You can use one command to set the same priority level on PoE ports in multiple modules. For example, to configure the priority to **High** for ports c5-c10, C23-C24, D1-D10, and D12, you could use this command:

ProCurve(config)# interface c5-c10,c23-c24,d1-d10,d12 power high
Disabling or Re-Enabling PoE Port Operation

**Syntax:**  

[no] interface <port-list> power

Re-enables PoE operation on <port-list> and restores the priority setting in effect when PoE was disabled on <port-list>. The [no] form of the command disables PoE operation on <port-list>.  

(Default: All PoE ports on the module are initially enabled for PoE operation at Low priority. If you configure a higher priority, this priority is retained until you change it.)

**Note:** Disabling all ports on a module allows the 22W of minimum PoE power allocated for the module to be recovered and used elsewhere. You must disable ALL ports in the module for this to occur.

Enabling Support for Pre-Standard Devices

The Series 5400zl and Series 3500yl switches also support some pre-802.3af devices. For a list of the devices supported, refer to the FAQs for your switch model.

**Syntax:**  

[no] power pre-std-detect

Detects and powers pre-802.3af standard devices.

**Note:** This is enabled by default.
Changing the Threshold for Generating a Power Notice

**Syntax:**  
\[ \text{power [slot < slot-identifier >] threshold < 1 - 99 >} \]

This command specifies the PoE usage level (as a percentage of the PoE power available on a module) at which the switch generates a power usage notice. This notice appears as an SNMP trap and a corresponding Event Log message, and occurs when a PoE module’s power consumption crosses the configured threshold value. That is, the switch generates a notice whenever the power consumption on a module either exceeds or drops below the specified percentage of the total PoE power available on the module.

This command configures the notification threshold for PoE power usage on either a global or per-module (slot) basis.

Without the \[ \text{[slot < slot-identifier >]} \] option, the switch applies one power threshold setting on all PoE modules installed in the switch. For example, suppose slots A, B, and C each have a PoE module installed. In this case, executing the following command sets the global notification threshold to 70% of available PoE power.

```
ProCurve(config)# power threshold 70
```

With this setting, if module B is allocated 100 watts of PoE power and is using 68 watts, and then another PD is connected to the module in slot B that uses 8 watts, the 70% threshold of 70 watts is exceeded. The switch sends an SNMP trap and generates this Event Log message:

```
Slot B POE usage has exceeded threshold of 70 %.
```

If the switch is configured for debug logging, it also sends the Event Log message to the configured debug destination(s).

On any PoE module, if an increasing PoE power load (1) exceeds the configured power threshold (which triggers the log message and SNMP trap), and then (2) later decreases and drops below the threshold again, the switch generates another SNMP trap, plus a message to the Event Log and any configured Debug destinations.
Configuring Optional PoE Port Identifiers

The Configured Type field enables you to configure a unique identifier for PoE ports that helps to identify the intended use for a given PoE port. Such identifiers are useful when viewing PoE status with the following commands:

- `show power-management brief` (page 11-20)
- `show power-management < port-list>` (page 11-21)

To configure a unique identifier for one or more PoE ports, use the switch’s `setmib` command to change the identifier setting in the switch’s MIB (Management Information Base), as described in the following steps.
1. Use the `walkmib pethPsePortType.< slot-# >` command to determine the MIB-based port number for the port to which you want to assign a Configured Type identifier. On the 5406zl switch the slot numbering is as follows:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Slot Number Used in the MIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Use the `setmib pethPsePortType.< slot-# >.< port-# >-D < identifier-string >` command to configure the identifier you want for a specific port.

For example, suppose that you have a PoE Module installed in slot B and want to assign the identifier “Wireless-1” to port 1 in this slot. To do so, you would use the following commands:
Power Over Ethernet (PoE) Operation
Configuring PoE Operation

To remove a Configured Type identifier, use the setmib command with a blank space enclosed in quotes. For example, to return port B2 in the above figure to a null setting, use this command:

```
ProCurve(config)# setmib pethPsePortType.2.27 -D " ">
```

For more on displaying PoE configuration and status, refer to “Viewing PoE Configuration and Status” on page 11-19.
Viewing PoE Configuration and Status
Displaying the Switch’s Global PoE Power Status

Syntax: show power-management

- **Maximum Power**: Lists the maximum PoE wattage available to provision active PoE ports on the switch.
- **Power In Use**: Lists the amount of PoE power presently in use.
- **Operational Status**: Indicates whether PoE power is available on the switch. (Default: On; shows Off if PoE power is not available. Shows Faulty if internal or external PoE power is oversubscribed or faulty.)
- **Usage Threshold (%)**: Lists the configured percentage of available PoE power provisioning the switch must exceed to generate a usage notice in the form of an Event Log message and an SNMP trap. If this event is followed by a drop in power provisioning below the threshold, the switch generates another SNMP trap and Event Log message. Event Log messages are also sent to any optionally configured debug destinations. (Default: 80%)

For example, in the default PoE configuration, when the switch is running with several ports supporting PD loads on the PoE module in slot A, `show power-management` displays data similar to the following:

```
ProCurve Switch 5406z1(config)# show power-management
Status and Counters - System Power Status
  Pre-standard Detect : On
Status and Counters - System Power Status for slot A
  Maximum Power : 273 W  Operational Status : On
  Power In Use : 0 W +/- 6 W  Usage Threshold (%): 80
```

Figure 11-2. Example of Show Power-Management Output
Displaying an Overview of PoE Status on All Ports

**Syntax:** `show power-management brief`

Displays the following port power status:

- **Port:** Lists all PoE-capable ports on the switch.
- **Power Enable:** Shows **Yes** for ports enabled to support PoE (the default) and **No** for ports on which PoE is disabled.
- **Priority:** Lists the power priority (Low, High, and Critical) configured on ports enabled for PoE. (For more on this topic, refer to the power command description under “Configuring PoE Operation” on page 11-13.)
- **Configured Type:** If configured, shows the user-specified identifier for the port. If not configured, the field is empty. Refer to “Configuring Optional PoE Port Identifiers” on page 11-16.
- **Detection Status:**
  - **Searching:** The port is trying to detect a PD connection.
  - **Delivering:** The port is delivering power to a PD.
  - **Disabled:** On the indicated port, either PoE support is disabled or PoE power is enabled but the PoE module does not have enough power available to supply the port’s power needs.
  - **Fault:** The switch detects a problem with the connected PD.
- **Power Class:** Shows the 802.3af power class of the PD detected on the indicated port. Classes include:
  
<table>
<thead>
<tr>
<th>Class</th>
<th>Power Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.44w to 12.95w</td>
</tr>
<tr>
<td>1</td>
<td>0.44w to 3.84w</td>
</tr>
<tr>
<td>2</td>
<td>3.84w to 6.49w</td>
</tr>
<tr>
<td>3</td>
<td>6.49w to 12.95w</td>
</tr>
<tr>
<td>4</td>
<td>reserved</td>
</tr>
</tbody>
</table>

- **Other fault:** The switch has detected an internal fault that prevents it from supplying power on that port.

For example, `show power-management brief` displays this output:
Power Over Ethernet (PoE) Operation
Viewing PoE Configuration and Status

Displaying the PoE Status on Specific Ports

**Syntax:** `show power-management <port-list>`

Displays the following PoE status and statistics (since the last reboot) for each port in `<port-list>`:

- **Power Enable:** Shows **Yes** for ports enabled to support PoE (the default) and **No** for ports on which PoE is disabled. Note that for ports on which power is disabled, this is the only field displayed by `show power-management <port-list>`.
- **Priority:** Lists the power priority (**Low**, **High**, and **Critical**) configured on ports enabled for PoE. (For more on this topic, refer to the power command description under “Configuring PoE Operation” on page 11-13.)
- **Detection Status:**
  - **Searching:** The port is available to support a PD.
  - **Delivering:** The port is delivering power to a PD.
  - **Disabled:** PoE power is enabled on the port but the PoE module does not have enough power available to supply the port’s power needs.
- **Fault:** The switch detects a problem with the connected PD.
- **Other Fault:** The switch has detected an internal fault that prevents it from supplying power on that port.
- **Over Current Cnt:** Shows the number of times a connected PD has attempted to draw more than 15.4 watts. Each occurrence generates an Event Log message.

---

ProCurve(config)# show power-management brief

<table>
<thead>
<tr>
<th>Port</th>
<th>Power Enable</th>
<th>Priority</th>
<th>Configured Type</th>
<th>Detection Status</th>
<th>Power Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Yes</td>
<td>Critical</td>
<td>Telephone</td>
<td>Delivering 1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>Yes</td>
<td>Critical</td>
<td>Telephone</td>
<td>Delivering 1</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Yes</td>
<td>High</td>
<td>Wireless</td>
<td>Delivering 3</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>Yes</td>
<td>High</td>
<td>Wireless</td>
<td>Delivering 3</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>Yes</td>
<td>Low</td>
<td>Telephone</td>
<td>Searching 0</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>Yes</td>
<td>Low</td>
<td>Wireless</td>
<td>Searching 0</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>Yes</td>
<td>Low</td>
<td>Wireless</td>
<td>Searching 0</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>Yes</td>
<td>Low</td>
<td>Wireless</td>
<td>Searching 0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11-3. Example of Show Power-Management Brief Output

Ports C1 through C4 are delivering power. The remaining ports are available to supply power, but currently do not detect a connected PD.
Power Over Ethernet (PoE) Operation
Viewing PoE Configuration and Status

Syntax: show power-management < port-list > (Continued)

- **Power Denied Cnt:** Shows the number of times PDs requesting power on the port have been denied due to insufficient power available. Each occurrence generates an Event Log message.
- **Voltage:** The total voltage, in dV, being delivered to PDs.
- **Power:** The total power, in mW, being delivered to PDs.
- **Configured Type:** If configured, shows the user-specified identifier for the port. If not configured, the field is empty. Refer to “Configuring Optional PoE Port Identifiers” on page 11-16.
- **Power Class:** Shows the power class of the PD detected on the indicated port. Classes include:
  
  0: 0.44w to 12.95w  
  1: 0.44w to 3.84w  
  2: 3.84w to 6.49w  
  3: 6.49w to 12.95w  

  4: reserved

- **MPS Absent Cnt:** This value shows the number of times a detected PD has no longer requested power from the port. Each occurrence generates an Event Log message. ("MPS" refers to the “Maintenance Power Signature.” Refer to “PoE Terminology” on page 11-4.)
- **Short Cnt:** Shows the number of times the switch provided insufficient current to a connected PD.
- **Current:** The total current, in mA, being delivered to PDs.

For example, if you wanted to view the PoE status of ports C1 and D5, you would use `show power-management c1,d5` to display the data:

```
ProCurve(config)# show power-management d4-d5

<table>
<thead>
<tr>
<th>Status and Counters - Port Power Status for port D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Enable : Yes</td>
</tr>
<tr>
<td>Priority     : Low</td>
</tr>
<tr>
<td>Detection    : Delivering</td>
</tr>
<tr>
<td>Status       : Power</td>
</tr>
<tr>
<td>: Power</td>
</tr>
<tr>
<td>: Power</td>
</tr>
<tr>
<td>: Power</td>
</tr>
<tr>
<td>Over Current Cnt : 0</td>
</tr>
<tr>
<td>Power Denied Cnt : 0</td>
</tr>
<tr>
<td>Voltage      : 492 dV</td>
</tr>
<tr>
<td>Current      : 52 mA</td>
</tr>
<tr>
<td>Power        : 14210 mW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status and Counters - Port Power Status for port D5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Enable : No</td>
</tr>
</tbody>
</table>
```

Figure 11-4. Example of Show Power-Management < port-list > Output
Planning and Implementing a PoE Configuration

This section provides an overview of some considerations for planning a PoE application. For additional information on this topic, refer to the ProCurve PoE Planning and Implementation Guide which is available on the ProCurve Networking web site at www.procurve.com. (Click on technical support, then Product manuals (all)).

Some of the elements you may want to consider for a PoE installation include:

- Port assignments to VLANs
- Use of security features
- Power requirements

This section can help you to plan your PoE installation. If you use multiple VLANs in your network, or if you have concerns about network security, you should read the first two topics. If your PoE installation comes close to (or is likely to exceed) the system’s ability to supply power to all devices that may request it, then you should also read the third topic. (If it is unlikely that your installation will even approach a full utilization of the PoE power available, then you may find it unnecessary to spend much time on calculating PoE power scenarios.)

Assigning PoE Ports to VLANs

If your network includes VLANs, you may want to assign various PoE-configured ports to specific VLANs. For example, if you are using PoE telephones in your network, you may want to assign ports used for telephone access to a VLAN reserved for telephone traffic.

Applying Security Features to PoE Configurations

You can utilize security features built into the switch to control device or user access to the network through PoE ports in the same way as non-PoE ports.
MAC Address Security: Using Port Security, you can configure each switch port with a unique list of MAC addresses for devices that are authorized to access the network through that port. For more information, refer to the chapter titled "Configuring and Monitoring Port Security" in the *Access Security Guide* for your switch.

Username/Password Security: If you are connecting a device that allows you to enter a username and password that is forwarded to a networked server for authentication, then you can also configure the following security features:

- Local username and password
- TACACS+
- RADIUS Authentication and Accounting
- 802.1X Authentication

For more information on security options, refer to the latest edition of the *Access Security Guide* for your switch. (The ProCurve Networking web site offers the latest version of all ProCurve product publications. Refer to “Getting Documentation From the Web” on page 1-7.)

Assigning Priority Policies to PoE Traffic

You can use the configurable QoS (Quality of Service) features in the switch to create prioritization policies for traffic moving through PoE ports. Table 11-3 lists the available classifiers and their order of precedence.

**Table 11-3. Classifiers for Prioritizing Outbound Packets**

<table>
<thead>
<tr>
<th>Priority</th>
<th>QoS Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UDP/TCP Application Type (port)</td>
</tr>
<tr>
<td>2</td>
<td>Device Priority (destination or source IP address)</td>
</tr>
<tr>
<td>3</td>
<td>IP Type of Service (ToS) field (IP packets only)</td>
</tr>
<tr>
<td>4</td>
<td>VLAN Priority</td>
</tr>
<tr>
<td>5</td>
<td>Incoming source-port on the switch</td>
</tr>
<tr>
<td>6</td>
<td>Incoming 802.1p priority (present in tagged VLAN environments)</td>
</tr>
</tbody>
</table>

For more on this topic, refer to the chapter titled “Quality of Service: Managing Bandwidth More Effectively” in the *Advanced Traffic Management Guide* for your switch.
Calculating the Maximum Load for a PoE Module

The maximum power available for a PoE module depends on the type of power supplies used. ProCurve recommends that if you use more than one power supply, use the same type of power supplies in your PoE implementation, that is, two J8712A power supplies supplying 273 watts each for a total of 546 watts of PoE power, or two J8713A power supplies supplying 900 watts of PoE power each for a total of 1800 watts of PoE power.

When you connect the first PD to a PoE port, the PoE module must have a minimum of 17 watts of PoE power available in order to detect and supply power to the device. Each PoE module is allocated a minimum of 22 watts of PoE power—17 watts for detection and additional 5 watts for variations in any applied power loads. Depending on the amount of power the power supply device delivers to a specific PoE module, there may or may not always be enough power available to connect and support PoE operation on all 24 Gig-T ports in a PoE module. PoE power is “available” if it is either not currently in use or can be acquired by (automatically) removing PoE power from another, lower-priority port.

After an appliance is connected to a PoE port, the switch reduces the power requirement for that port from the initial 17 watts to the actual power level the appliance requires.

Thus, after you have connected all but the last planned appliance to a PoE module, there must be a minimum of 17 watts of unused PoE power available on the module to support adding the final appliance. If you are using one J8712A power supply powering one PoE module only (all 273 watts are available to that module), the power is calculated as follows:

\[ n = \text{the total number of appliances you want to connect to one PoE module} \]

and

\[ w = \text{the total PoE power required to operate} \ (n - 1) \ \text{appliances} \]

then, the following must be true:

\[ w + 17 \leq 273 \]

or

\[ (273 - 17) \geq w \]
Therefore, you can power 17 ports at full power (273 watts - 17 watts = 256 watts ÷ 15.4 watts per port = 16.6 + 1 ports). In actual practice, the PD will mostly likely use less than 15.4 watts of PoE power, allowing you to attach more than 17 PDs.

For example, suppose you have 24 identical appliances to connect to a PoE module receiving 273 watts of PoE power. For this example, each appliance requires 8.5 watts to operate. In this case, the module would support 24 appliances at any given time because there is enough unused power to meet the minimum of 17 watts required to support the initial power-up of the 24th appliance. That is, 273 - (24 x 8.5) = 69 watts of unused power.

**When a Power Supply Fails**

You must have two power supplies installed to maintain at least some amount of PoE power or to keep the switch itself operational if one power supply fails. If you have two J812A power supplies installed supplying 273 watts of PoE power each (total = 546 watts), then 273 watts of PoE power will be available to continue supplying PoE power to ports in priority order if one supply fails.

If you have two J8713A power supplies installed supplying 900 watts of PoE power each (total = 1800 watts), then 900 watts of PoE power will be available to continue supplying PoE power to ports in priority order if one power supply fails.

If you have a mixed power supply configuration with one J8712A power supply supplying 273 watts of PoE power, and one J8713A power supply supplying 900 watts of PoE power, a total of 1173 watts of PoE power is available. If a power supply fails, the switch will continue to supply 273 watts of PoE power to the ports with the highest priority (if all ports are the same priority level, power is allocated to the lowest port number first) and power down any ports using power above the total of 273 watts. The switch then determines which power supply actually failed, the larger J8713A or the smaller J8712A. If the smaller power supply failed, the switch restores power to the ports in priority order until the available 900 watts is used.

If the larger J8713A power supply fails, then only 273 watts of PoE power is available and the other ports remain shut down in priority order.

For additional information about planning your PoE configuration, refer to the *PoE Planning and Implementation Guide*, which is available from the ProCurve Networking web site at [www.procurve.com](http://www.procurve.com). (Click on technical support, then Product manuals (all).)
PoE Operating Notes

- It is important to remember that power is allocated dynamically between PoE modules, with 22 watts of power allocated to each PoE module in each slot. This ensures that 17 watts of PoE power is available for the initial power-up of the last PD connected. The additional 5 watts smooth out any power fluctuations. To best utilize the allocated PoE power, spread your connected PoE devices as evenly as possible across modules.

- To cycle the power on a PD receiving power from a PoE port on the switch, disable, then re-enable the power to that port. For example, to cycle the power on a PoE device connected to port 1 on a PoE module installed in slot D:

  ProCurve(config)# no interface d1 power
  ProCurve(config)# interface d1 power

- Disabling all PoE ports in a module allows you to recover the 22 watts of PoE power allocated to the module for use in other modules. You must disable ALL ports in the module for this to occur.
PoE Event Log Messages

PoE operation generates these Event Log messages. You can also configure the switch to send these messages to a configured debug destination (terminal device or SyslogD server).

“Informational” PoE Event-Log Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>I ( MM/DD/YY ) &lt; HH:MM:SS &gt; &lt;chassis</td>
<td>ports&gt;</td>
</tr>
<tr>
<td>Slot &lt; slot-id&gt; POE usage is below configured threshold of (&lt;1-99)%</td>
<td>Indicates that POE usage on the module in the indicated slot has decreased below the threshold specified by the last execution of the power threshold command affecting that module. This message occurs if, after the last reboot, the PoE demand on the module exceeded the power threshold and then later dropped below the threshold value.</td>
</tr>
<tr>
<td>port &lt; port-id&gt; applying power to PD</td>
<td>A PoE device is connected to the indicated port and receiving power.</td>
</tr>
<tr>
<td>port &lt; port-id&gt; PD detected</td>
<td>The switch has detected a PoE device connected to the indicated port.</td>
</tr>
<tr>
<td>Slot &lt; slot-id&gt; software update started on PoE controller &lt;controller-id&gt;</td>
<td>A module needs to have its PoE firmware updated and the software begins the update process. On Series 5400zl switches the controller-id is always “1”</td>
</tr>
<tr>
<td>Slot &lt; slot-id&gt; software update completed on PoE controller &lt;controller-id&gt;</td>
<td>A module has its PoE firmware updated and the software has finished this process.</td>
</tr>
</tbody>
</table>
"Warning" PoE Event-Log Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>W &lt;MM/DD/YY&gt; <a href="">HH:MM:SS</a> chassis</td>
<td>Message header, with severity, date, system time, and system module type. For more information on Event Log operation, including severity indicators, refer to “Using the Event Log To Identify Problem Sources” on page C-26.</td>
</tr>
<tr>
<td>Slot &lt;slot-id&gt; POE usage has exceeded threshold of &lt;1-99&gt; %</td>
<td>Indicates that POE usage in the indicated slot has exceeded the configured threshold for the module, as specified by the last execution of the power threshold or power slot &lt;slot-id&gt; threshold command. (Note that the switch also generates an SNMP trap for this event.)</td>
</tr>
<tr>
<td>Port &lt;port-id&gt; PD Denied power due to insufficient power allocation.</td>
<td>There is insufficient power available to power the PD on the indicated port and the port does not have sufficient PoE priority to take power from another active PoE port.</td>
</tr>
<tr>
<td>Port &lt;port-id&gt; PD Invalid Signature indication</td>
<td>The switch has detected a non-802.3af-compliant device on the indicated port. This message appears for all non-802.3af devices connected to the port, such as other switches, PC-NICs, etc.</td>
</tr>
<tr>
<td>Port &lt;port-id&gt; PD MPS Absent indication</td>
<td>The switch no longer detects a device on &lt;port-id&gt;. The device may have been disconnected, powered down, or stopped functioning.</td>
</tr>
<tr>
<td>Port &lt;port-id&gt; PD Other Fault indication</td>
<td>There is a problem with the PD connected to the port.</td>
</tr>
<tr>
<td>Port &lt;port-id&gt; PD Over Current indication</td>
<td>The PD connected to &lt;port-id&gt; has requested more than 15.4 watts of power. This may indicate a short-circuit or other problem in the PD.</td>
</tr>
<tr>
<td>50v Power Supply is faulted. Failures:x</td>
<td>Internal power supply has faulted.</td>
</tr>
<tr>
<td>50v Power Supply is OK. Failures:x</td>
<td>Internal power supply is now OK.</td>
</tr>
</tbody>
</table>
—This page is intentionally unused—
# Port Trunking

## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>12-2</td>
</tr>
<tr>
<td>Port Trunk Features and Operation</td>
<td>12-4</td>
</tr>
<tr>
<td>Trunk Configuration Methods</td>
<td>12-4</td>
</tr>
<tr>
<td>Menu: Viewing and Configuring a Static Trunk Group</td>
<td>12-9</td>
</tr>
<tr>
<td>CLI: Viewing and Configuring Port Trunk Groups</td>
<td>12-11</td>
</tr>
<tr>
<td>Using the CLI To View Port Trunks</td>
<td>12-11</td>
</tr>
<tr>
<td>Using the CLI To Configure a Static or Dynamic Trunk Group</td>
<td>12-14</td>
</tr>
<tr>
<td>Web: Viewing Existing Port Trunk Groups</td>
<td>12-17</td>
</tr>
<tr>
<td>Trunk Group Operation Using LACP</td>
<td>12-18</td>
</tr>
<tr>
<td>Default Port Operation</td>
<td>12-21</td>
</tr>
<tr>
<td>LACP Notes and Restrictions</td>
<td>12-22</td>
</tr>
<tr>
<td>Trunk Group Operation Using the “Trunk” Option</td>
<td>12-26</td>
</tr>
<tr>
<td>How the Switch Lists Trunk Data</td>
<td>12-27</td>
</tr>
<tr>
<td>Outbound Traffic Distribution Across Trunked Links</td>
<td>12-27</td>
</tr>
</tbody>
</table>
Overview

This chapter describes creating and modifying port trunk groups. This includes non-protocol trunks and LACP (802.3ad) trunks.

Port Status and Configuration Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>viewing port trunks</td>
<td>n/a</td>
<td>page 12-9</td>
<td>page 12-11</td>
<td>page 12-17</td>
</tr>
<tr>
<td>configuring a static trunk group</td>
<td>none</td>
<td>page 12-9</td>
<td>page 12-15</td>
<td>—</td>
</tr>
<tr>
<td>configuring a dynamic LACP trunk group</td>
<td>disabled</td>
<td>—</td>
<td>page 12-15</td>
<td>—</td>
</tr>
</tbody>
</table>

Port trunking allows you to assign up to eight physical links to one logical link (trunk) that functions as a single, higher-speed link providing dramatically increased bandwidth. This capability applies to connections between backbone devices as well as to connections in other network areas where traffic bottlenecks exist. A trunk group is a set of up to eight ports configured as members of the same port trunk. Note that the ports in a trunk group do not have to be consecutive. For example:

Switch 1:
Ports c1 - c3, c5 - c7, and c9 - c10 configured as a port trunk group.

The multiple physical links in a trunk behave as one logical link

Switch 2:
Ports a1, a3 - a4, a6 - a8, a11, and a12 configured as a port trunk group

Figure 12-1. Conceptual Example of Port Trunking

With full-duplex operation in an eight-port trunk group, trunking enables the following bandwidth capabilities:
Port Connections and Configuration: All port trunk links must be point-to-point connections between a switch and another switch, router, server, or workstation configured for port trunking. No intervening, non-trunking devices are allowed. It is important to note that ports on both ends of a port trunk group must have the same mode (speed and duplex) and flow control settings.

**Note**

Link Connections. The switch does not support port trunking through an intermediate, non-trunking device such as a hub, or using more than one media type in a port trunk group. Similarly, for proper trunk operation, all links in the same trunk group must have the same speed, duplex, and flow control.

**Port Security Restriction.** Port security does not operate on a trunk group. If you configure port security on one or more ports that are later added to a trunk group, the switch resets the port security parameters for those ports to the factory-default configuration.

**Caution**

To avoid broadcast storms or loops in your network while configuring a trunk, first disable or disconnect all ports you want to add to or remove from the trunk. After you finish configuring the trunk, enable or re-connect the ports.
Port Trunk Features and Operation

The switches covered in this guide offer these options for port trunking:

- LACP: IEEE 802.3ad—page 12-18
- Trunk: Non-Protocol—page 12-26

Up to 36 trunk groups are supported on the switches covered in this guide. The actual maximum depends on the number of ports available on the switch and the number of links in each trunk. (Using the Link Aggregation Control Protocol—LACP—option, you can include standby trunked ports in addition to the maximum of eight actively trunking ports.)

**LACP Note**

LACP requires full-duplex (FDx) links of the same media type (10/100Base-T, 100FX, etc.) and the same speed, and enforces speed and duplex conformance across a trunk group. For most installations, ProCurve recommends that you leave the port Mode settings at Auto (the default). LACP also operates with Auto-10, Auto-100, and Auto-1000 (if negotiation selects FDx), and 10FDx, 100FDx, and 1000FDx settings. (The 10-gigabit ports available for some switch models allow only the Auto setting.)

**Fault Tolerance:** If a link in a port trunk fails, the switch redistributes traffic originally destined for that link to the remaining links in the trunk. The trunk remains operable as long as there is at least one link in operation. If a link is restored, that link is automatically included in the traffic distribution again. The LACP option also offers a standby link capability, which enables you to keep links in reserve for service if one or more of the original active links fails. Refer to “Trunk Group Operation Using LACP” on page 12-18.)

**Trunk Configuration Methods**

**Dynamic LACP Trunk:** The switch automatically negotiates trunked links between LACP-configured ports on separate devices, and offers one dynamic trunk option: LACP. To configure the switch to initiate a dynamic LACP trunk with another device, use the interface command in the CLI to set the default LACP option to Active on the ports you want to use for the trunk. For example, the following command sets ports C1-C4 to LACP active:
ProCurve(config) int c1-c4 lacp active

Note that the preceding example works if the ports are not already operating in a trunk. To change the LACP option on ports already operating as a trunk, you must first remove them from the trunk. For example, if ports C1 - C4 were LACP-active and operating in a trunk with another device, you would do the following to change them to LACP-passive:

ProCurve(config)# no int c1-c4 lacp

"Removes the ports from the trunk."

ProCurve(config)# int c1-c4 lacp passive

"Configures LACP passive."

**Static Trunk:** The switch uses the links you configure with the Port/Trunk Settings screen in the menu interface or the `trunk` command in the CLI to create a static port trunk. The switch offers two types of static trunks: LACP and Trunk.

**Table 12-1. Trunk Types Used in Static and Dynamic Trunk Groups**

<table>
<thead>
<tr>
<th>Trunking Method</th>
<th>LACP</th>
<th>Trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Static</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
## Table 12-2. Trunk Configuration Protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Trunking Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACP (802.3ad)</td>
<td>Provides dynamic and static LACP trunking options.</td>
</tr>
<tr>
<td></td>
<td>- <strong>Dynamic LACP</strong> — Use the switch-negotiated dynamic LACP trunk when:</td>
</tr>
<tr>
<td></td>
<td>- The port on the other end of the trunk link is configured for Active or Passive LACP.</td>
</tr>
<tr>
<td></td>
<td>- You want fault-tolerance for high-availability applications. If you use an eight-link trunk you can also configure one or more additional links to operate as standby links that will activate only if another active link goes down.</td>
</tr>
<tr>
<td></td>
<td>- <strong>Static LACP</strong> — Use the manually configured static LACP trunk when:</td>
</tr>
<tr>
<td></td>
<td>- The port on the other end of the trunk link is configured for a static LACP trunk.</td>
</tr>
<tr>
<td></td>
<td>- You want to configure non-default spanning tree or IGMP parameters on an LACP trunk group.</td>
</tr>
<tr>
<td></td>
<td>- You want an LACP trunk group to operate in a VLAN other than the default VLAN and GVRP is disabled. (Refer to “VLANs and Dynamic LACP” on page 12-23.)</td>
</tr>
<tr>
<td></td>
<td>- You want to use a monitor port on the switch to monitor an LACP trunk.</td>
</tr>
</tbody>
</table>

For more information, refer to “Trunk Group Operation Using LACP” on page 12-18.

<table>
<thead>
<tr>
<th>Trunk (non-protocol)</th>
<th>Provides manually configured, static-only trunking to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Most ProCurve switches and routing switches not running the 802.3ad LACP protocol.</td>
</tr>
<tr>
<td></td>
<td>- Windows NT and HP-UX workstations and servers</td>
</tr>
<tr>
<td></td>
<td>Use the Trunk option when:</td>
</tr>
<tr>
<td></td>
<td>- The device to which you want to create a trunk link is using a non-802.3ad trunking protocol.</td>
</tr>
<tr>
<td></td>
<td>- You are unsure which type of trunk to use, or the device to which you want to create a trunk link is using an unknown trunking protocol.</td>
</tr>
<tr>
<td></td>
<td>- You want to use a monitor port on the switch to monitor traffic on a trunk.</td>
</tr>
</tbody>
</table>

Refer to “Trunk Group Operation Using the “Trunk” Option” on page 12-26.
Table 12-3. General Operating Rules for Port Trunks

**Media:** For proper trunk operation, all ports on both ends of a trunk group must have the same media type and mode (speed and duplex). (For the switches covered in this guide, ProCurve recommends leaving the port Mode setting at Auto or, in networks using Cat 3 cabling, Auto-10.)

**Port Configuration:** The default port configuration is Auto, which enables a port to sense speed and negotiate duplex with an Auto-Enabled port on another device. ProCurve recommends that you use the Auto setting for all ports you plan to use for trunking. Otherwise, you must manually ensure that the mode setting for each port in a trunk is compatible with the other ports in the trunk.

![Recommended Port Mode Setting for LACP](image)

ProCurve(config)# show interface config

<table>
<thead>
<tr>
<th>Port Settings</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 10/10CTX</td>
<td>Yes</td>
<td>Auto</td>
<td>Disable</td>
</tr>
<tr>
<td>C2 10/10CTX</td>
<td>Yes</td>
<td>Auto</td>
<td>Disable</td>
</tr>
</tbody>
</table>

**Figure 12-2. Recommended Port Mode Setting for LACP**

All of the following operate on a per-port basis, regardless of trunk membership:
- Enable/Disable
- Flow control (Flow Ctrl)

LACP is a full-duplex protocol. Refer to “Trunk Group Operation Using LACP” on page 12-18.

**Trunk Configuration:** All ports in the same trunk group must be the same trunk type (LACP or Trunk). All LACP ports in the same trunk group must be either all static LACP or all dynamic LACP.

A trunk appears as a single port labeled Dyn1 (for an LACP dynamic trunk) or Trk1 (for a static trunk of type: LACP, Trunk) on various menu and CLI screens. For a listing of which screens show which trunk types, refer to “How the Switch Lists Trunk Data” on page 12-27.

For spanning-tree or VLAN operation, configuration for all ports in a trunk is done at the trunk level. (You cannot separately configure individual ports within a trunk for spanning-tree or VLAN operation.)

**Traffic Distribution:** All of the switch trunk protocols use the SA/DA (Source Address/Destination Address) method of distributing traffic across the trunked links. Refer to “Outbound Traffic Distribution Across Trunked Links” on page 12-27.
Port Trunking
Trunk Configuration Methods

Spanning Tree: 802.1D (STP) and 802.1w (RSTP) Spanning Tree operate as a global setting on the switch (with one instance of Spanning Tree per switch). 802.1s (MSTP) Spanning Tree operates on a per-instance basis (with multiple instances allowed per switch). For each Spanning Tree instance, you can adjust Spanning Tree parameters on a per-port basis. A static trunk of any type appears in the Spanning Tree configuration display, and you can configure Spanning Tree parameters for a static trunk in the same way that you would configure Spanning Tree parameters on a non-trunked port. (Note that the switch lists the trunk by name—such as Trk1—and does not list the individual ports in the trunk.) For example, if ports C1 and C2 are configured as a static trunk named Trk1, they are listed in the Spanning Tree display as Trk1 and do not appear as individual ports in the Spanning Tree displays.

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Cost</th>
<th>Priority</th>
<th>State</th>
<th>Designated Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>100/1000T</td>
<td>5</td>
<td>128</td>
<td>Forwarding</td>
<td>0020c1-b27ae0</td>
</tr>
<tr>
<td>C4</td>
<td>100/1000T</td>
<td>5</td>
<td>128</td>
<td>Forwarding</td>
<td>0060b0-889e00</td>
</tr>
<tr>
<td>C5</td>
<td>100/1000T</td>
<td>5</td>
<td>128</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>100/1000T</td>
<td>5</td>
<td>128</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>Trk1</td>
<td>1</td>
<td>64</td>
<td>Forwarding</td>
<td></td>
<td>0001e7-a0ec00</td>
</tr>
</tbody>
</table>

Figure 12-3. Example of a Port Trunk in a Spanning Tree Listing

When Spanning Tree forwards on a trunk, all ports in the trunk will be forwarding. Conversely, when Spanning Tree blocks a trunk, all ports in the trunk are blocked.

Note: A dynamic LACP trunk operates only with the default Spanning Tree settings. Also, this type of trunk appears in the CLI show spanning-tree display, but not in the Spanning Tree Operation display of the Menu interface.

If you remove a port from a static trunk, the port retains the same Spanning Tree settings that were configured for the trunk.

IP Multicast Protocol (IGMP): A static trunk of any type appears in the IGMP configuration display, and you can configure IGMP for a static trunk in the same way that you would configure IGMP on a non-trunked port. (Note that the switch lists the trunk by name—such as Trk1—and does not list the individual ports in the trunk.) Also, creating a new trunk automatically places the trunk in IGMP Auto status if IGMP is enabled for the default VLAN. A dynamic LACP trunk operates only with the default IGMP settings and does not appear in the IGMP configuration display or show ip igmp listing.

VLANs: Creating a new trunk automatically places the trunk in the DEFAULT_VLAN, regardless of whether the ports in the trunk were in another VLAN. Similarly, removing a port from a trunk group automatically places the port in the default VLAN. You can configure a static trunk in the same way that you configure a port for membership in any VLAN.

Note: For a dynamic LACP trunk to operate in a VLAN other than the default VLAN (DEFAULT_VLAN), GVRP must be enabled. Refer to “Trunk Group Operation Using LACP” on page 12-18.

Port Security: Trunk groups (and their individual ports) cannot be configured for port security, and the switch excludes trunked ports from the show port-security listing. If you configure non-default port security settings for a port, then subsequently try to place the port in a trunk, you will see the following message and the command will not be executed: <port-list> Command cannot operate over a logical port.

Monitor Port:

Note: A trunk cannot be a monitor port. A monitor port can monitor a static trunk but cannot monitor a dynamic LACP trunk.
Menu: Viewing and Configuring a Static Trunk Group

Important

Configure port trunking before you connect the trunked links to another switch, routing switch, or server. Otherwise, a broadcast storm could occur. (If you need to connect the ports before configuring them for trunking, you can temporarily disable the ports until the trunk is configured. Refer to “Using the CLI To Enable or Disable Ports and Configure Port Mode” on page 10-8.)

To View and/or Configure Static Port Trunking: This procedure uses the Port/Trunk Settings screen to configure a static port trunk group on the switch.

1. Follow the procedures in the Important note above.
2. From the Main Menu, Select:
   2. Switch Configuration …
      2. Port/Trunk Settings
3. Press [E] (for Edit) and then use the arrow keys to access the port trunk parameters.

   ![Figure 12-4. Example of the Menu Screen for Configuring a Port Trunk Group](image)

   These two columns indicate static trunk status.

   (For dynamic LACP trunk status, use the CLI show lacp command—page 12-13.)

4. In the Group column, move the cursor to the port you want to configure.
5. Use the Space bar to choose a trunk group assignment (Trk1, Trk2, and so on) for the selected port.
For proper trunk operation, all ports in a trunk must have the same media type and mode (such as 10/100TX set to 100FDx, or 100FX set to 100FDx). The flow control settings must also be the same for all ports in a given trunk. To verify these settings, refer to “Viewing Port Status and Configuring Port Parameters” on page 10-2.

You can configure the trunk group with up to eight ports per trunk. If multiple VLANs are configured, all ports within a trunk will be assigned to the same VLAN or set of VLANs. (With the 802.1Q VLAN capability built into the switch, more than one VLAN can be assigned to a trunk. Refer to the chapter titled “Static Virtual LANs (VLANs)” in the Advanced Traffic Management Guide for your switch.)

(To return a port to a non-trunk status, keep pressing the Space bar until a blank appears in the highlighted Group value for that port.)

6. Move the cursor to the Type column for the selected port and use the Space bar to select the trunk type:
   - LACP
   - Trunk (the default type if you do not specify a type)

   All ports in the same trunk group on the same switch must have the same Type (LACP or Trunk).

7. When you are finished assigning ports to the trunk group, press [Enter], then [S] (for Save) and return to the Main Menu. (It is not necessary to reboot the switch.)

   During the Save process, traffic on the ports configured for trunking will be delayed for several seconds. If the Spanning Tree Protocol is enabled, the delay may be up to 30 seconds.
8. Connect the trunked ports on the switch to the corresponding ports on the opposite device. If you previously disabled any of the trunked ports on the switch, enable them now. (Refer to “Viewing Port Status and Configuring Port Parameters” on page 10-2.)

Check the Event Log (“Using the Event Log To Identify Problem Sources” on page C-26) to verify that the trunked ports are operating properly.

---

### CLI: Viewing and Configuring Port Trunk Groups

**Trunk Status and Configuration Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show trunks</td>
<td>below</td>
</tr>
<tr>
<td>show lacp</td>
<td>page 12-13</td>
</tr>
<tr>
<td>trunk</td>
<td>page 12-15</td>
</tr>
<tr>
<td>interface &lt;port-list&gt; lacp</td>
<td>page 12-15</td>
</tr>
</tbody>
</table>

#### Using the CLI To View Port Trunks

You can list the trunk type and group for all ports on the switch or for selected ports. You can also list LACP-only status information for LACP-configured ports.

**Listing Static Trunk Type and Group for All Ports or for Selected Ports.**

**Syntax:** `show trunks [<port-list>]`

*Omitting the* `<port-list>` *parameter results in a static trunk data listing for all LAN ports in the switch. For example, in a switch where ports A4 and A5 belong to Trunk 1 and ports A7 and A8 belong to Trunk 2, you have the options shown in figures 12-6 and 12-7 for displaying port data for ports belonging to static trunks.*
Using a port list specifies, for switch ports in a static trunk group, only the ports you want to view. In this case, the command specifies ports A5 through A7. However, because port A6 is not in a static trunk group, it does not appear in the resulting listing:

```
ProCurve> show trunks e a5-a7

Load Balancing

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Type</th>
<th>Group</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>Print-Server-Trunk</td>
<td>10/100TX</td>
<td>Trk1</td>
<td>Trunk</td>
</tr>
<tr>
<td>A7</td>
<td>not assigned</td>
<td>10/100TX</td>
<td>Trk2</td>
<td>Trunk</td>
</tr>
</tbody>
</table>
```

Port A5 appears with an example of a name that you can optionally assign using the Friendly Port Names feature. (Refer to “Using Friendly (Optional) Port Names” on page 10-16.)

Port A6 does not appear in this listing because it is not assigned to a static trunk.

**Figure 12-6. Example Listing Specific Ports Belonging to Static Trunks**

The `show trunks < port-list>` command in the above example includes a port list, and thus shows trunk group information only for specific ports that have membership in a static trunk. In figure 12-7, the command does not include a port list, so the switch lists all ports having static trunk membership.

```
ProCurve> show trunks

Load Balancing

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Type</th>
<th>Group</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>Print-Server-Trunk</td>
<td>10/100TX</td>
<td>Trk1</td>
<td>Trunk</td>
</tr>
<tr>
<td>A5</td>
<td>Print-Server-Trunk</td>
<td>10/100TX</td>
<td>Trk1</td>
<td>Trunk</td>
</tr>
<tr>
<td>A7</td>
<td>not assigned</td>
<td>10/100TX</td>
<td>Trk2</td>
<td>Trunk</td>
</tr>
<tr>
<td>A8</td>
<td>not assigned</td>
<td>10/100TX</td>
<td>Trk2</td>
<td>Trunk</td>
</tr>
</tbody>
</table>
```

**Figure 12-7. Example of a Show Trunk Listing Without Specifying Ports**
Listing Static LACP and Dynamic LACP Trunk Data.

**Syntax:**  show lacp

*Lists data for only the LACP-configured ports.*

In the following example, ports A1 and A2 have been previously configured for a static LACP trunk. (For more on “Active”, see table 11-12-5 on page 12-21.)

<table>
<thead>
<tr>
<th>PORT</th>
<th>LACP</th>
<th>TRUNK</th>
<th>PORT</th>
<th>LACP</th>
<th>LACP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMB</td>
<td>ENABLED</td>
<td>GROUP</td>
<td>STATUS</td>
<td>PARTNER</td>
<td>STATUS</td>
</tr>
<tr>
<td>A1</td>
<td>Active</td>
<td>Trk1</td>
<td>Up</td>
<td>Yes</td>
<td>Success</td>
</tr>
<tr>
<td>A2</td>
<td>Active</td>
<td>Trk1</td>
<td>Up</td>
<td>Yes</td>
<td>Success</td>
</tr>
<tr>
<td>A3</td>
<td>Active</td>
<td>A3</td>
<td>Down</td>
<td>No</td>
<td>Success</td>
</tr>
<tr>
<td>A4</td>
<td>Passive</td>
<td>A4</td>
<td>Down</td>
<td>No</td>
<td>Success</td>
</tr>
<tr>
<td>A5</td>
<td>Passive</td>
<td>A5</td>
<td>Down</td>
<td>No</td>
<td>Success</td>
</tr>
<tr>
<td>A6</td>
<td>Passive</td>
<td>A6</td>
<td>Down</td>
<td>No</td>
<td>Success</td>
</tr>
</tbody>
</table>

**Figure 12-8. Example of a Show LACP Listing**

(For a description of each of the above-listed data types, refer to table 12-5, “LACP Port Status Data” on page 12-21.)

**Dynamic LACP Standby Links.** Dynamic LACP trunking enables you to configure standby links for a trunk by including more than eight ports in a dynamic LACP trunk configuration. When eight ports (trunk links) are up, the remaining link(s) will be held in standby status. If a trunked link that is “Up” fails, it will be replaced by a standby link, which maintains your intended bandwidth for the trunk. (Refer to also the “Standby” entry under “Port Status” in "Table 12-5. LACP Port Status Data" on page 12-21.) In the next example, ports A1 through A9 have been configured for the same LACP trunk. Notice that one of the links shows Standby status, while the remaining eight links are “Up”.

Configure port trunking before you connect the trunked links between switches. Otherwise, a broadcast storm could occur. (If you need to connect the ports before configuring them for trunking, you can temporarily disable the ports until the trunk is configured. Refer to “Using the CLI To Enable or Disable Ports and Configure Port Mode” on page 10-8.)

The table on page 12-5 describes the maximum number of trunk groups you can configure on the switch. An individual trunk can have up to eight links, with additional standby links if you’re using LACP. You can configure trunk group types as follows:

<table>
<thead>
<tr>
<th>Trunk Type</th>
<th>Trunk Group Membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACP</td>
<td>Yes</td>
</tr>
<tr>
<td>Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

The following examples show how to create different types of trunk groups.
Configuring a Static Trunk or Static LACP Trunk Group.

**Syntax:**

```
trunk <port-list> <trk1 ... trk36> <trunk | lacp>
```

*Configures the specified static trunk type.*

This example uses ports C4 - C6 to create a non-protocol static trunk group with the group name of **Trk2**.

ProCurve(config)# trunk c4-c6 trk2 trunk

**Removing Ports from a Static Trunk Group.** This command removes one or more ports from an existing **Trkx** trunk group.

---

**Caution**

Removing a port from a trunk can create a loop and cause a broadcast storm. When you remove a port from a trunk where spanning tree is not in use, ProCurve recommends that you first disable the port or disconnect the link on that port.

---

**Syntax:**

```
no trunk <port-list>
```

*Removes the specified ports from an existing trunk group.*

For example, to remove ports C4 and C5 from an existing trunk group.

ProCurve(config)# no trunk c4-c5

**Enabling a Dynamic LACP Trunk Group.** In the default port configuration, all ports on the switch are set to disabled. To enable the switch to automatically form a trunk group that is dynamic on both ends of the link, the ports on one end of a set of links must be LACP **Active**. The ports on the other end can be either LACP **Active** or LACP **Passive**. The **active** command enables the switch to automatically establish a (dynamic) LACP trunk group when the device on the other end of the link is configured for LACP **Passive**.
Port Trunking

CLI: Viewing and Configuring Port Trunk Groups

Figure 12-10. Example of Criteria for Automatically Forming a Dynamic LACP Trunk

Syntax:  interface < port-list > lacp active

Configures < port-list > as LACP active. If the ports at the other end of the links on < port-list > are configured as LACP passive, then this command enables a dynamic LACP trunk group on < port-list >.

This example uses ports C4 and C5 to enable a dynamic LACP trunk group.

ProCurve(config)# interface c4-c5 lacp active

Removing Ports from an Dynamic LACP Trunk Group.  To remove a port from dynamic LACP trunk operation, you must turn off LACP on the port. (On a port in an operating, dynamic LACP trunk, you cannot change between LACP Active and LACP passive without first removing LACP operation from the port.)
Caution

Unless spanning tree is running on your network, removing a port from a trunk can result in a loop. To help prevent a broadcast storm when you remove a port from a trunk where spanning tree is not in use, ProCurve recommends that you first disable the port or disconnect the link on that port.

Syntax: no interface <port-list> lacp

Removes <port-list> from any dynamic LACP trunk and returns the ports in <port-list> to passive LACP.

In this example, port C6 belongs to an operating, dynamic LACP trunk. To remove port C6 from the dynamic trunk and return it to passive LACP, you would do the following:

ProCurve(config)# no interface c6 lacp
ProCurve(config)# interface c6 lacp passive

Note that in the above example, if the port on the other end of the link is configured for active LACP or static LACP, the trunked link will be re-established almost immediately.

Web: Viewing Existing Port Trunk Groups

While the web browser interface does not enable you to configure a port trunk group, it does provide a view of an existing trunk group.

To view any port trunk groups:

Click on the Status tab.

Click on [Port Status].
Trunk Group Operation Using LACP

The switch can automatically configure a dynamic LACP trunk group or you can manually configure a static LACP trunk group.

Note

LACP requires full-duplex (FDx) links of the same media type (10/100Base-T, 100FX, etc.) and the same speed, and enforces speed and duplex conformance across a trunk group. For most installations, ProCurve recommends that you leave the port Mode settings at Auto (the default). LACP also operates with Auto-10, Auto-100, and Auto-1000 (if negotiation selects FDx), and 10FDx, 100FDx, and 1000FDx settings.

LACP trunk status commands include:

<table>
<thead>
<tr>
<th>Trunk Display Method</th>
<th>Static LACP Trunk</th>
<th>Dynamic LACP Trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI show lacp command</td>
<td>Included in listing.</td>
<td>Included in listing.</td>
</tr>
<tr>
<td>CLI show trunk command</td>
<td>Included in listing.</td>
<td>Not included.</td>
</tr>
<tr>
<td>Port/Trunk Settings screen in menu interface</td>
<td>Included in listing.</td>
<td>Not included</td>
</tr>
</tbody>
</table>

Thus, to display a listing of dynamic LACP trunk ports, you must use the show lacp command.

In most cases, trunks configured for LACP on the switches covered in this guide operate as described in table 12-4 on the next page.
Table 12-4. LACP Trunk Types

<table>
<thead>
<tr>
<th>LACP Port Trunk Configuration</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic LACP</td>
<td>This option automatically establishes an 802.3ad-compliant trunk group, with LACP for the port Type parameter and DynX for the port Group name, where X is an automatically assigned value from 1 to 36, depending on how many dynamic and static trunks are currently on the switch. (The switch allows a maximum of 36 trunk groups in any combination of static and dynamic trunks.) Note: Dynamic LACP trunks operate only in the default VLAN (unless GVRP is enabled and Forbid is used to prevent the trunked ports from joining the default VLAN). Thus, if an LACP dynamic port forms using ports that are not in the default VLAN, the trunk will automatically move to the default VLAN unless GVRP operation is configured to prevent this from occurring. In some cases, this can create a traffic loop in your network. For more on this topic, refer to “VLANs and Dynamic LACP” on page 12-23. Under the following conditions, the switch automatically establishes a dynamic LACP port trunk group and assigns a port Group name: • The ports on both ends of each link have compatible mode settings (speed and duplex). • The port on one end of each link must be configured for LACP Active and the port on the other end of the same link must be configured for either LACP Passive or LACP Active. For example:</td>
</tr>
</tbody>
</table>

![Switch 1 and Switch 2 diagram]

Either of the above link configurations allow a dynamic LACP trunk link. **Backup Links**: A maximum of eight operating links are allowed in the trunk, but, with dynamic LACP, you can configure one or more additional (backup) links that the switch automatically activates if a primary link fails. To configure a link as a standby for an existing eight-port dynamic LACP trunk, ensure that the ports in the standby link are configured as either active-to-active or active-to-passive between switches. **Displaying Dynamic LACP Trunk Data**: To list the configuration and status for a dynamic LACP trunk, use the CLI `show lacp` command. Note: The dynamic trunk is automatically created by the switch, and is not listed in the static trunk listings available in the menu interface or in the CLI `show trunk` listing.
Port Trunking
Trunk Group Operation Using LACP

### Static LACP

<table>
<thead>
<tr>
<th>LACP Port Trunk Configuration</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static LACP</td>
<td>Provides a manually configured, static LACP trunk to accommodate these conditions:</td>
</tr>
<tr>
<td></td>
<td>• The port on the other end of the trunk link is configured for a static LACP trunk.</td>
</tr>
<tr>
<td></td>
<td>• You want to configure non-default spanning tree or IGMP parameters on an LACP trunk group.</td>
</tr>
<tr>
<td></td>
<td>• You want an LACP trunk group to operate in a VLAN other than the default VLAN and GVRP is disabled. (Refer to “VLANs and Dynamic LACP” on page 12-23.)</td>
</tr>
<tr>
<td></td>
<td>• You want to use a monitor port on the switch to monitor an LACP trunk.</td>
</tr>
</tbody>
</table>

The trunk operates if the trunk group on the opposite device is running one of the following trunking protocols:

• Active LACP
• Passive LACP
• Trunk

This option uses LACP for the port Type parameter and TrkX for the port Group parameter, where X is an automatically assigned value in a range corresponding to the maximum number of trunks the switch allows. (The table on page 12-5 lists the maximum number of trunk groups allowed on the switches covered in this guide.)

Displaying Static LACP Trunk Data: To list the configuration and status for a static LACP trunk, use the CLI `show lacp` command. To list a static LACP trunk with its assigned ports, use the CLI `show trunk` command or display the menu interface Port/Trunk Settings screen.

Static LACP does not allow standby ports.
Default Port Operation

In the default configuration, LACP is disabled for all ports. If LACP is not configured as Active on at least one end of a link, then the port does not try to detect a trunk configuration and operates as a standard, untrunked port. Table 12-5 lists the elements of per-port LACP operation. To display this data for a switch, execute the following command in the CLI:

ProCurve> show lacp

Table 12-5. LACP Port Status Data

<table>
<thead>
<tr>
<th>Status Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Numb</td>
<td>Shows the physical port number for each port configured for LACP operation (C1, C2, C3 ...). Unlisted port numbers indicate that the missing ports are assigned to a static Trunk group are not configured for any trunking.</td>
</tr>
</tbody>
</table>
| LACP Enabled     | Active: The port automatically sends LACP protocol packets.  
Passive: The port does not automatically send LACP protocol packets, and responds only if it receives LACP protocol packets from the opposite device.  
A link having either two active LACP ports or one active port and one passive port can perform dynamic LACP trunking. A link having two passive LACP ports will not perform LACP trunking because both ports are waiting for an LACP protocol packet from the opposite device.  
Note: In the default switch configuration, LACP is disabled for all ports. |
| Trunk Group      | TrkX: This port has been manually configured into a static LACP trunk.  
Trunk Group Same as Port Number: The port is configured for LACP, but is not a member of a port trunk. |
| Port Status      | Up: The port has an active LACP link and is not blocked or in Standby mode.  
Down: The port is enabled, but an LACP link is not established. This can indicate, for example, a port that is not connected to the network or a speed mismatch between a pair of linked ports.  
Disabled: The port cannot carry traffic.  
Blocked: LACP, spanning tree has blocked the port. (The port is not in LACP Standby mode.) This may be due to a (brief) trunk negotiation or a configuration error such as differing port speeds on the same link or trying to connect the switch to more trunks than it can support. (See the table on page 12-5.)  
Note: Some older devices are limited to four ports in a trunk. When eight LACP-enabled ports are connected to one of these older devices, four ports connect, but the other four ports are blocked.  
Standby: The port is configured for dynamic LACP trunking to another device, but the maximum number of ports for the Dynamic trunk to that device has already been reached on either the switch or the other device. This port will remain in reserve, or “standby” unless LACP detects that another, active link in the trunk has become disabled, blocked, or down. In this case, LACP automatically assigns a Standby port, if available, to replace the failed port. |
| LACP Partner     | Yes: LACP is enabled on both ends of the link.  
No: LACP is enabled on the switch, but either LACP is not enabled or the link has not been detected on the opposite device. |
LACP Notes and Restrictions

**802.1X (Port-Based Access Control) Configured on a Port.** To maintain security, LACP is not allowed on ports configured for 802.1X authenticator operation. If you configure port security on a port on which LACP (active or passive) is configured, the switch removes the LACP configuration, displays a notice that LACP is disabled on the port(s), and enables 802.1X on that port.

```
ProCurve(config)# aaa port-access authenticator b1
LACP has been disabled on 802.1x port(s).
ProCurve(config)#
```

The switch will not allow you to configure LACP on a port on which port access (802.1X) is enabled. For example:

```
ProCurve(config)# int b1 lacp passive
Error configuring port < port-number >: LACP and 802.1x cannot be run together.
ProCurve(config)#
```

To restore LACP to the port, you must first remove the port’s 802.1X configuration and then re-enable LACP active or passive on the port.

**Port Security Configured on a Port.** To maintain security, LACP is not allowed on ports configured for port security. If you configure port security on a port on which LACP (active or passive) is configured, the switch removes the LACP configuration, displays a notice that LACP is disabled on the port(s), and enables port security on that port. For example:

```
ProCurve(config)# port-security a17 learn-mode static
address-limit 2
LACP has been disabled on secured port(s).
ProCurve(config)#
```

The switch will not allow you to configure LACP on a port on which port security is enabled. For example:
ProCurve(config)# int a17 lacp passive
Error configuring port A17: LACP and port security cannot be run together.
ProCurve(config)#

To restore LACP to the port, you must remove port security and re-enable LACP active or passive.

**Changing Trunking Methods.** To convert a trunk from static to dynamic, you must first eliminate the static trunk.

**Static LACP Trunks.** Where a port is configured for LACP (Active or Passive), but does not belong to an existing trunk group, you can add that port to a static trunk. Doing so disables dynamic LACP on that port, which means you must manually configure both ends of the trunk.

**Dynamic LACP Trunks.** You can configure a port for LACP-active or LACP-passive, but on a dynamic LACP trunk you cannot configure the other options that you can on static trunks. If you want to manually configure a trunk, use the `trunk` command. (Refer to “Using the CLI To Configure a Static or Dynamic Trunk Group” on page 12-14.)

**VLANs and Dynamic LACP.** A dynamic LACP trunk operates only in the default VLAN (unless you have enabled GVRP on the switch and use `Forbid` to prevent the ports from joining the default VLAN).

- If you want to use LACP for a trunk on a non-default VLAN and GVRP is disabled, configure the trunk as a static trunk.
**Blocked Ports with Older Devices.** Some older devices are limited to four ports in a trunk. When eight LACP-enabled ports are connected to one of these older devices, four ports connect, but the other four ports are blocked. The LACP status of the blocked ports is shown as “Failure”.

If one of the other ports becomes disabled, a blocked port will replace it (Port Status becomes “Up”). When the other port becomes active again, the replacement port goes back to blocked (Port Status is “Blocked”). It can take a few seconds for the switch to discover the current status of the ports.

```
ProCurve(eth-B1-B8)# show lacp

<table>
<thead>
<tr>
<th>PORT NUMB</th>
<th>LACP ENABLED</th>
<th>TRUNK GROUP</th>
<th>PORT STATUS</th>
<th>LACP PARTNER</th>
<th>LACP STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Active</td>
<td>Dyn1</td>
<td>Up</td>
<td>Yes</td>
<td>Success</td>
</tr>
<tr>
<td>B2</td>
<td>Active</td>
<td>Dyn1</td>
<td>Up</td>
<td>Yes</td>
<td>Success</td>
</tr>
<tr>
<td>B3</td>
<td>Active</td>
<td>Dyn1</td>
<td>Up</td>
<td>Yes</td>
<td>Success</td>
</tr>
<tr>
<td>B4</td>
<td>Active</td>
<td>Dyn1</td>
<td>Up</td>
<td>Yes</td>
<td>Success</td>
</tr>
<tr>
<td>B5</td>
<td>Active</td>
<td>Dyn1</td>
<td>Blocked</td>
<td>Yes</td>
<td>Failure</td>
</tr>
<tr>
<td>B6</td>
<td>Active</td>
<td>Dyn1</td>
<td>Blocked</td>
<td>Yes</td>
<td>Failure</td>
</tr>
<tr>
<td>B7</td>
<td>Active</td>
<td>B7</td>
<td>Down</td>
<td>No</td>
<td>Success</td>
</tr>
<tr>
<td>B8</td>
<td>Active</td>
<td>B8</td>
<td>Down</td>
<td>No</td>
<td>Success</td>
</tr>
</tbody>
</table>
```

Figure 12-11. Blocked Ports with LACP
If there are ports that you do not want on the default VLAN, ensure that they cannot become dynamic LACP trunk members. Otherwise a traffic loop can unexpectedly occur. For example:

![Diagram showing VLAN-1 (Default VLAN) connected to VLAN-2, then moving to VLAN-1, creating a traffic loop.]

**Figure 12-12. A Dynamic LACP Trunk Forming in a VLAN Can Cause a Traffic Loop**

Easy control methods include either disabling LACP on the selected ports or configuring them to operate in static LACP trunks.

**Spanning Tree and IGMP.** If Spanning Tree and/or IGMP is enabled in the switch, a dynamic LACP trunk operates only with the default settings for these features and does not appear in the port listings for these features.

**Half-Duplex and/or Different Port Speeds Not Allowed in LACP Trunks.** The ports on both sides of an LACP trunk must be configured for the same speed and for full-duplex (FDx). The 802.3ad LACP standard specifies a full-duplex (FDx) requirement for LACP trunking. (10-gigabit ports operate only at FDx.)

A port configured as LACP passive and not assigned to a port trunk can be configured to half-duplex (HDx). However, in any of the following cases, a port cannot be reconfigured to an HDx setting:

- If the port is a 10-gigabit port.
- If a port is set to LACP Active, you cannot configure it to HDx.
- If a port is already a member of a static or dynamic LACP trunk, you cannot configure it to HDx.
- If a port is already set to HDx, the switch does not allow you to configure it for a static or dynamic LACP trunk.
Dynamic/Static LACP Interoperation: A port configured for dynamic LACP can properly interoperate with a port configured for static (TrkX) LACP, but any ports configured as standby LACP links will be ignored.

Trunk Group Operation Using the “Trunk” Option

This method creates a trunk group that operates independently of specific trunking protocols and does not use a protocol exchange with the device on the other end of the trunk. With this choice, the switch simply uses the SA/DA method of distributing outbound traffic across the trunked ports without regard for how that traffic is handled by the device at the other end of the trunked links. Similarly, the switch handles incoming traffic from the trunked links as if it were from a trunked source.

When a trunk group is configured with the trunk option, the switch automatically sets the trunk to a priority of “4” for spanning-tree operation (even if spanning-tree is currently disabled. This appears in the running-config file as spanning-tree Trkn priority 4. Executing write memory after configuring the trunk places the same entry in the startup-config file.

Use the Trunk option to establish a trunk group between a switch covered in this guide and another device, where the other device’s trunking operation fails to operate properly with LACP trunking configured on the switches.
How the Switch Lists Trunk Data

Static Trunk Group: Appears in the menu interface and the output from the CLI `show trunk` and `show interfaces` commands.

Dynamic LACP Trunk Group: Appears in the output from the CLI `show lacp` command.

<table>
<thead>
<tr>
<th>Interface Option</th>
<th>Dynamic LACP Trunk Group</th>
<th>Static LACP Trunk Group</th>
<th>Static Non-Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu Interface</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CLI <code>show trunk</code></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CLI <code>show interfaces</code></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CLI <code>show lacp</code></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CLI <code>show spanning-tree</code></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CLI <code>show igmp</code></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CLI <code>show config</code></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Outbound Traffic Distribution Across Trunked Links

The two trunk group options (LACP and Trunk) use source-destination address pairs (SA/DA) for distributing outbound traffic over trunked links.

SA/DA (source address/destination address) causes the switch to distribute outbound traffic to the links within the trunk group on the basis of source/destination address pairs. That is, the switch sends traffic from the same source address to the same destination address through the same trunked link, and sends traffic from the same source address to a different destination address through a different link, depending on the rotation of path assignments among the links in the trunk. Likewise, the switch distributes traffic for the same destination address but from different source addresses through different links. Because the amount of traffic coming from or going to various nodes in a network can vary widely, it is possible for one link in a trunk group to be fully utilized while others in the same trunk have unused bandwidth capacity even though the address assignments are evenly distributed across the links in a trunk. In actual networking environments, this is rarely a problem. However, if it becomes a problem, you can use the ProCurve
Manager Plus network management software to quickly and easily identify the sources of heavy traffic (top talkers) and make adjustments to improve performance.

Broadcasts, multicasts, and floods from different source addresses are distributed evenly across the links. As links are added or deleted, the switch redistributes traffic across the trunk group. For example, in figure 12-13 showing a three-port trunk, traffic could be assigned as shown in table 12-6.

![Figure 12-13. Example of Port-Trunked Network](image)

**Table 12-6. Example of Link Assignments in a Trunk Group (SA/DA Distribution)**

<table>
<thead>
<tr>
<th>Source:</th>
<th>Destination:</th>
<th>Link:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node A</td>
<td>Node W</td>
<td>1</td>
</tr>
<tr>
<td>Node B</td>
<td>Node X</td>
<td>2</td>
</tr>
<tr>
<td>Node C</td>
<td>Node Y</td>
<td>3</td>
</tr>
<tr>
<td>Node D</td>
<td>Node Z</td>
<td>1</td>
</tr>
<tr>
<td>Node A</td>
<td>Node Y</td>
<td>2</td>
</tr>
<tr>
<td>Node B</td>
<td>Node W</td>
<td>3</td>
</tr>
</tbody>
</table>
Port Traffic Controls

Contents

Overview ................................................................. 13-2

All-Traffic Rate-Limiting ............................................ 13-3
  Introduction ......................................................... 13-3
  Rate-Limiting Operation ......................................... 13-3
    Configuring Inbound Rate-Limiting ......................... 13-4
    Displaying the Current Rate-Limit Configuration ........ 13-5
    Operating Notes for Rate-Limiting ......................... 13-6
  ICMP Rate-Limiting ............................................... 13-9
    Terminology ..................................................... 13-9
    Effect of ICMP Rate-Limiting ................................. 13-9
    Operating Notes for ICMP Rate-Limiting .................. 13-15

Guaranteed Minimum Bandwidth (GMB) ........................ 13-18
  Introduction ....................................................... 13-19
  Terminology ....................................................... 13-19
  GMB Operation .................................................... 13-19
    Configuring Guaranteed Minimum Bandwidth for
    Outbound Traffic ............................................... 13-21
    Displaying the Current Guaranteed Minimum Bandwidth
    Configuration .................................................. 13-25
  GMB Operating Notes ............................................ 13-26

Jumbo Packets ....................................................... 13-27
  Terminology ....................................................... 13-27
  Operating Rules .................................................. 13-28
  Configuring Jumbo Packet Operation ......................... 13-29
    Overview ......................................................... 13-29
    Viewing the Current Jumbo Configuration .................. 13-30
    Enabling or Disabling Jumbo Traffic on a VLAN .......... 13-32
  Operating Notes for Jumbo Traffic-Handling .............. 13-32
  Troubleshooting .................................................. 13-35
Overview

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate-Limiting</td>
<td>None</td>
<td>n/a</td>
<td>13-3</td>
<td>n/a</td>
</tr>
<tr>
<td>Guaranteed Minimum</td>
<td>Per Queue (1-8 order): 2%-3%-30%-10%-10%-10%-15%-20%</td>
<td>n/a</td>
<td>13-18</td>
<td>n/a</td>
</tr>
<tr>
<td>Bandwidth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumbo Packets</td>
<td>Disabled</td>
<td>n/a</td>
<td>13-27</td>
<td>n/a</td>
</tr>
</tbody>
</table>

This chapter includes:

- **Rate Limiting**: Enables a port to limit the amount of bandwidth a user or device may utilize for inbound traffic on the switch.

- **Guaranteed Minimum Bandwidth (GMB)**: Provides a method for ensuring that each of a port’s outbound queues has a specified minimum consideration for sending traffic out on the link to another device.

- **Jumbo Packets**: Enables ports operating at 1 Gbs or 10 Gbps speeds to accept inbound packets of up to 9220 bytes when configured for jumbo traffic.
Port Traffic Controls
All-Traffic Rate-Limiting

All-Traffic Rate-Limiting

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate-limit &lt; limit-% &gt;</td>
<td>none</td>
<td>n/a</td>
<td>page 13-4</td>
<td>n/a</td>
</tr>
<tr>
<td>show rate-limit [ port-list ]</td>
<td>n/a</td>
<td>n/a</td>
<td>page 13-5</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Introduction

Rate-Limiting for all traffic provides a method for limiting the amount of bandwidth a user or device may utilize inbound on a switch port. This effectively sets an inbound usage level on a given port, and is a tool for enforcing maximum service level commitments granted to network users. This feature operates on a per-port level and is not configurable on port trunks. Note that rate-limiting is designed to be applied at the network edge to limit inbound traffic from non-critical users or to enforce service agreements such as those offered by Internet Service Providers (ISPs) to provide only the bandwidth for which a customer has paid.

Note

On the switches covered in this guide, rate-limiting also can be applied by a RADIUS server during an authentication client session. Refer to the chapter titled “RADIUS Authentication and Accounting” in the Access Security Guide for your switch.

Note

The switches covered in this guide also support ICMP rate-limiting. For further information, refer to “ICMP Rate-Limiting” on page 13-9.

Caution

Rate-Limiting is intended for use on edge ports in a network. It is not recommended for use on links to other switches, routers, or servers within a network, or for use in the network core. Doing so can interfere with applications the network requires to function properly.

Under network stress conditions, a port may allow occasional bursts of inbound traffic forwarding that exceed the port’s configured rate. For this reason, rate-limiting should not be employed as a security feature.

Rate-Limiting Operation

Rate-Limiting operates on a per-port basis to allow only the specified percentage of the port’s bandwidth to be used for inbound traffic. For example, if a 100 Mbps port negotiates a link at 100 Mbps and is rate-limit configured at 50%,
then the inbound traffic flow through that port is limited to no more than 50 Mbps. Similarly, if the same port negotiates a 10 Mbps link, then it allows no more than 5 Mbps of inbound traffic.

Configuring Inbound Rate-Limiting

This command controls inbound usage of a port by setting a limit on the bandwidth available for inbound traffic. The syntax of the rate-limiting command has changed to accommodate the new ICMP rate-limiting feature available. Refer to “ICMP Rate-Limiting” on page 13-9.

**Syntax:**  
[no] int < port-list > rate-limit < all | icmp > < 0..100 >

*Configures an inbound traffic rate limit (on non-trunked ports) as a percentage of the bandwidth available on the link. You can configure a rate limit from either the global configuration level (as shown above) or from the port context level. The "no" form of the command disables rate-limiting on the specified ports. (Default: Disabled.)*

**Notes:**
- Rate-Limiting applies only to non-trunked ports (and is not recommended for meshed ports).
- Configuring a rate limit of 0 (zero) on a port blocks all inbound traffic on that port. However, if this is the desired behavior for the port, ProCurve recommends that you use `< port-list > disable` to disable the port instead of configuring a rate limit of 0.

For example, either of the following commands configures an inbound rate limit of 60% on ports A3 - A5:

```
ProCurve (config)# int a3-a5 rate-limit all 60
ProCurve (eth-A3-A5)# rate-limit all 60
```
Displaying the Current Rate-Limit Configuration

This command displays the per-port rate-limit configuration in the running-config file.

**Syntax:**  show rate-limit all [ port-list ]

Without [ port-list ], this command lists the rate-limit configuration for all ports on the switch. With [ port-list ], this command lists the rate-limit configuration for the specified port(s). This command operates the same way in any CLI context.

For example, if you wanted to view the rate-limiting configuration on the first five ports in the module in slot “A”:

```
ProCurve# show rate-limit all a1-a5
Inbound Rate Limit Maximum %

<table>
<thead>
<tr>
<th>Port</th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td></td>
<td>Disabled</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>Disabled</td>
</tr>
<tr>
<td>A3</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
```

**Figure 13-1. Example of Listing the Rate-Limit Configuration**

The `show config` command lists the per-port rate-limiting and Guaranteed Minimum Bandwidth configuration in the startup-config file. (Note that configuration changes performed with the CLI, but not followed by a `write mem` command do not appear in the startup-config file.)
Operating Notes for Rate-Limiting

- Rate-Limiting is available on all types of ports on the switches covered in this guide, and at all port speeds configurable for these devices. (Rate-Limiting is not allowed on trunked ports.)

- The configured rate limit on a port reflects the permitted forwarding rate from the port to the switching fabric, and is visible as the average rate of the outbound traffic originating from the rate-limited port. Also, rate-limiting reflects the available percentage of a port’s entire inbound bandwidth. The rate of inbound flow for traffic of a given priority and the rate of flow from a rate-limited port to a particular queue of an outbound port are not measures of the actual rate limit enforced on a port.

- Rate-Limiting operates on a per-port basis, regardless of traffic priority. Configuring rate-limiting on a port where other features affect inbound port queue behavior (such as flow control) can result in the port not achieving its configured rate-limiting maximum. For example, in some situations with flow control configured on a rate-limited port, there can be enough “back pressure” to hold high-priority inbound traffic from the upstream device or application to a rate that is lower than the configured...
rate limit. In this case, the inbound traffic flow does not reach the configured rate and lower priority traffic is not forwarded into the switch fabric from the rate-limited port. (This behavior is termed “head-of-line blocking” and is a well-known problem with flow-control.) In another type of situation, an outbound port can become oversubscribed by traffic received from multiple rate-limited ports. In this case, the actual rate for traffic on the rate-limited ports may be lower than configured because the total traffic load requested to the outbound port exceeds the port’s bandwidth, and thus some requested traffic may be held off on inbound.

**Note on Testing Rate-Limiting**

Rate-Limiting is byte-based and is applied to the available bandwidth on a port, and not to any specific applications running through the port. If the total bandwidth requested by all applications together is less than the available, configured maximum rate, then no rate-limit can be applied. This situation occurs with a number of popular throughput-testing software applications, as well as most regular network applications. Consider the following example, which uses the minimum packet size:

The total available bandwidth on a 100 Mbps port “X” (allowing for Inter-packet Gap—IPG), with no rate-limiting restrictions, is:

\[ (((100,000,000 \text{ bits}) / 8 ) / 84) \times 64 = 9,523,809 \text{ bytes per second} \]

where:

- The divisor (84) includes the 12-byte IPG, 8-byte preamble, and 64-bytes of data required to transfer a 64-byte packet on a 100 Mbps link.
- Calculated “bytes-per-second” includes packet headers and data. This value is the maximum “bytes-per-second” that 100 Mbps can support for minimum-sized packets.

Suppose port “X” is configured with a rate limit of 50% (4,761,904 Mbytes). If a throughput-testing application is the only application using the port, and transmits 1 Mbyte of data through the port, it uses only 10.5% of the port’s available bandwidth, and the rate-limit of 50% has no effect. This is because the maximum rate permitted (50%) exceeds the test application’s bandwidth usage (126,642-164,062 bytes, depending upon packet size, which is only 1.3-1.7% of the available total). Before rate-limiting can occur, the test application’s bandwidth usage must exceed the configured rate-limit. In this example, the bandwidth usage must exceed 50% of the port’s total available bandwidth. That is, in this example, to test the rate-limit setting, the following must be true:

\[ \text{bandwidth usage} > (0.50 \times 9,523,809) \]
- **Network Stress Conditions:** Under normal network operating conditions, rate-limiting limits inbound traffic on a port to no more than the configured level. However, under network stress conditions, the port may allow occasional bursts of inbound traffic forwarding that exceed the configured rate.

- **Optimum Rate-Limiting Operation:** Optimum rate-limiting occurs with 64-byte packet sizes. Traffic with larger packet sizes can result in performance somewhat below the configured inbound bandwidth. This is to ensure the strictest possible rate-limiting of all sizes of packets.

- **Outbound Traffic Flow:** Configuring rate-limiting on a port does not control the rate of outbound traffic flow on the port.

- **Rate-Limiting Effect on Port Trunks:** Rate-Limiting is not supported on ports configured in a trunk group. Configuring a port for rate-limiting and then adding it to a trunk suspends rate-limiting on the port while it is in the trunk. Attempting to configure rate-limiting on a port that already belongs to a trunk generates the following message:

  `<port-list>`: Operation is not allowed for a trunked port.

- **Traffic Filters on Rate-Limited Ports:** Configuring a traffic filter on a port does not prevent the switch from including filtered traffic in the bandwidth-use measurement for rate-limiting. That is, where rate-limiting and traffic filtering are configured on the same port, the inbound, filtered traffic is included in the bandwidth measurement for calculating when the limit has been reached. Traffic filters include:
  - ACLs
  - Source-Port filters
  - Protocol filters
  - Multicast filters

- **Rate-Limiting Not Recommended on Mesh Ports:** Rate-Limiting can reduce the efficiency of paths through a mesh domain.
ICMP Rate-Limiting

In IP networks, ICMP messages are generated in response to either inquiries or requests from routing and diagnostic functions. These messages are directed to the applications originating the inquiries. In unusual situations, if the messages are generated rapidly with the intent of overloading network circuits, they can threaten network availability. This problem is visible in denial-of-service (DoS) attacks or other malicious behaviors where a worm or virus overloads the network with ICMP messages to an extent where no other traffic can get through. (ICMP messages themselves can also be misused as virus carriers). Such malicious misuses of ICMP can include a high number of ping packets that mimic a valid source IP address and an invalid destination IP address (spoofed pings), and a high number of response messages (such as Destination Unreachable error messages) generated by the network. ICMP Rate-Limiting provides a method for limiting the amount of bandwidth that may be utilized for inbound ICMP traffic on a switch port or trunk. This feature allows users to restrict ICMP traffic to levels that permit necessary ICMP functions, but throttle additional traffic that may be due to worms or viruses (reducing their spread and effect). In addition, this preserves inbound port bandwidth for non-ICMP traffic.

Terminology

All-Traffic Rate-Limiting: Applies a rate-limit to all inbound traffic, including ICMP traffic, received on an interface.

ICMP Rate-Limiting: Applies a rate-limit to all inbound ICMP traffic received on an interface, but does not limit other types of inbound traffic.

Spoofed Ping: An ICMP echo request packet intentionally generated with a valid source IP address and an invalid destination IP address. Spoofed pings are often created with the intent to oversubscribe network resources with traffic having invalid destinations.

Effect of ICMP Rate-Limiting

ICMP rate-limiting generally allows only a specified percentage of an interface’s inbound bandwidth to be used for ICMP traffic. As a result, inbound bandwidth is preserved for non-ICMP traffic and the port or trunk throttles any sudden flood of inbound ICMP traffic that may be due to a worm or virus attack (or any other cause). Notice that ICMP rate-limiting does not throttle non-ICMP traffic. In cases where you want to throttle both ICMP traffic and all other inbound traffic on a given interface, you can configure both ICMP rate-limiting and all-traffic rate-limiting.
The ICMP protocol is necessary for routing, diagnostic, and error responses in an IP network. ICMP rate-limiting is primarily used for throttling worm or virus-like behavior, and should normally be configured to allow one to five percent of available inbound bandwidth to be used for ICMP traffic. **This feature should not be used to remove all ICMP traffic from a network.**

**Note**

Because all-traffic rate-limiting and ICMP rate-limiting operate similarly, the CLI command for the all-traffic version of rate-limiting has been modified for compatibility with the ICMP rate-limiting CLI command. These commands appear in the following format:

```
rate-limit [ all | icmp ]
```

**Network Application.** Apply ICMP rate-limiting on all connected interfaces on the switch to effectively throttle excessive ICMP messaging from any source. On edge interfaces, where ICMP traffic should be minimal, a threshold of 1% of available bandwidth should be sufficient for most applications. On core interfaces, such as switch-to-switch and switch-to-router, a maximum threshold of 5% should be sufficient for normal ICMP traffic. (“Normal” ICMP traffic levels should be the maximums that occur when the network is rebooting.)

**Figure 13-3. Example of ICMP Rate-Limiting**
ICMP Rate-Limiting Operation. ICMP rate-limiting operates on an interface (per-port) basis to allow, on average, the highest expected amount of legitimate, inbound ICMP traffic. For example, if a 100 Mbps port negotiates a link to another switch at 100 Mbps and is ICMP rate-limit configured at 5%, then the inbound ICMP traffic flow through that port is limited to 5 Mbps. Similarly, if the same port negotiates a 10 Mbps link, then it allows 0.5 Mbps of inbound traffic. (For more on performance under varying operating conditions, refer to “Operating Notes for ICMP Rate-Limiting” on page 13-15.) If an interface experiences an inbound flow of ICMP traffic in excess of its configured limit, the switch generates a log message and an SNMP trap (if an SNMP trap receiver is configured).

Using Both ICMP and All-Traffic Rate-Limiting on an Interface. ICMP and all-traffic rate-limiting can be configured on the same interface. All-Traffic rate-limiting applies to all inbound traffic (including ICMP traffic), while ICMP rate-limiting applies only to inbound ICMP traffic.

Note that if the inbound, all-traffic load on an interface meets or exceeds the current all-traffic rate-limit while the ICMP traffic rate-limit on the same interface has not been reached, then all excess traffic will be dropped, including any inbound ICMP traffic above the all-traffic limit (regardless of whether the ICMP rate-limit has been reached). Suppose, for example:

- The all-traffic limit on port “X” is configured at 55% of the port’s bandwidth.
- The ICMP traffic limit on port “X” is configured at 2% of the port’s bandwidth.

If at a given moment:

- inbound ICMP traffic on port “X” is using 1% of the port’s bandwidth, and
- inbound traffic of all types on port “X” demands 61% of the port’s bandwidth,

then all inbound traffic above 55% of the port’s bandwidth, including any additional ICMP traffic will be dropped as long as all inbound traffic combined on the port demands 55% or more of the port’s bandwidth.

Note

Under network stress conditions, an interface may allow occasional bursts of inbound ICMP traffic forwarding that exceed the interface’s configured ICMP traffic rate. Refer to “ICMP Rate-Limit Imposes an Average Bandwidth Limit” on page 13-16.
Configuring Inbound Rate-Limiting. This command controls inbound usage of a port by setting a limit on the bandwidth available for inbound traffic.

**Syntax:**  

```
[no] int < port-list > rate-limit icmp < 0..100 >
```

Configures inbound ICMP traffic rate limiting. You can configure a rate limit from either the global configuration level (as shown above) or from the interface context level. The **no** form of the command disables ICMP rate-limiting on the specified interface(s). (Default: **Disabled**.)  

**1 - 99:** Values in this range allow ICMP traffic as a percentage of the bandwidth available on the interface.  

**0:** This value causes an interface to drop all incoming ICMP traffic, and is not recommended. Refer to the Caution on page 13-10.  

**Note:** ICMP Rate-Limiting is not supported on meshed ports. (Rate-limiting can reduce the efficiency of paths through a mesh domain.)

For example, either of the following commands configures an inbound rate limit of 1% on ports A3 - A5, which are used as network edge ports:

ProCurve(config)# int a3-a5 rate-limit icmp 1  
ProCurve (eth-A3-A5)# rate-limit icmp 1

**Displaying the Current Rate-Limit Configuration.** This command displays the per-interface rate-limit configuration in the running-config file.

**Syntax:**  

```
show rate-limit icmp [ port-list ]
```

Without [**port-list**], this command lists the ICMP rate-limit configuration for all ports on the switch. With [**port-list**], this command lists the rate-limit configuration for the specified interface(s). This command operates the same way in any CLI context.
For example, if you wanted to view the rate-limiting configuration on the first six ports in the module in slot “B”:

```
ProCurve(config)# show rate-limit icmp b1-b6

<table>
<thead>
<tr>
<th>Port</th>
<th>Rate Limit Maximum Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Disabled</td>
</tr>
<tr>
<td>B2</td>
<td>1</td>
</tr>
<tr>
<td>B3</td>
<td>1</td>
</tr>
<tr>
<td>B4</td>
<td>1</td>
</tr>
<tr>
<td>B5</td>
<td>1</td>
</tr>
<tr>
<td>B6</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
```

**Figure 13-4. Example of Listing the Rate-Limit Configuration**

The `show running` command displays the currently applied setting for any interfaces in the switch configured for ICMP rate limiting. The `show config` command displays this information for the configuration currently stored in the startup-config file. (Note that configuration changes performed with the CLI, but not followed by a `write mem` command do not appear in the startup-config file.)
Port Traffic Controls
All-Traffic Rate-Limiting

Figure 13-5. Example of ICMP Rate-Limit Settings Listed in the "show running" Output

ICMP Rate-Limiting Trap and Event Log Messages. If the switch detects a volume of inbound ICMP traffic on a port that exceeds the ICMP rate-limit configured for that port, it generates one SNMP trap and one informational Event Log message to notify the system operator of the condition. (The trap and Event Log message are sent within two minutes of the when the event occurred on the port.) For example:

I 06/30/05 11:15:42 RateLim: ICMP traffic exceeded configured limit on port 1

These trap and Event Log messages provide an advisory that inbound ICMP traffic on a given interface has exceeded the configured maximum. The additional ICMP traffic is dropped, but the excess condition may indicate an infected host (or other traffic threat or network problem) on that interface. The system operator should investigate the attached devices or network conditions further.
The switch does not send more traps or Event Log messages for excess ICMP traffic on the affected port until the system operator resets the port’s ICMP trap function. The reset can be done through SNMP from a network management station or through the CLI with the following `setmib` command.

**Syntax:**  `setmib hpicmpratelimitPortAlarmflag.<internal-port-#> -i 1`

*On a port configured with ICMP rate-limiting, this command resets the ICMP trap function, which allows the switch to generate a new SNMP trap and an Event Log message if ICMP traffic in excess of the configured limit is detected on the port.*

For example, an operator noticing an ICMP rate-limiting trap or Event Log message originating with port A1 on a switch would use the following `setmib` command to reset the port to send a new message if the condition occurs again.

```
ProCurve(config)# setmib hpicmpratelimitportalarmflag.1 -i 1
```

**Operating Notes for ICMP Rate-Limiting**

ICMP rate-limiting is byte-based and is applied to the available bandwidth on an interface. If the total bandwidth requested by all ICMP traffic is less than the available, configured maximum rate, then no ICMP rate-limit can be applied. That is, an interface must be receiving more inbound ICMP traffic than the configured bandwidth limit allows. If the interface is configured with both `rate-limit all` and `rate-limit icmp`, then the ICMP limit can be met or exceeded only if the rate limit for all types of inbound traffic has not already been met or exceeded. Also, to test the ICMP limit it is necessary to generate ICMP traffic that exceeds the configured ICMP rate limit. Using the recommended settings—1% for edge interfaces and 5% maximum for core interfaces—it is easy to generate sufficient traffic. However, if you are testing with higher maximums, it is necessary to ensure that the ICMP traffic volume exceeds the configured maximum. Note also that testing ICMP rate-limiting where inbound ICMP traffic on a given interface has destinations on multiple outbound interfaces, the test results must be based on the received outbound ICMP average aggregate traffic over time.

ICMP rate-limiting is not reflected in counters monitoring inbound traffic because inbound packets are counted before the ICMP rate-limiting drop action occurs.
- **Interface Support:** ICMP rate-limiting is available on all types of ports, and at all port speeds configurable for the switch.

- **Rate-Limiting Not Permitted on Mesh Ports:** Either type of rate-limiting can reduce the efficiency of paths through a mesh domain.

- **Monitoring (Mirroring) ICMP Rate-Limited Interfaces:** If monitoring is configured, packets dropped by ICMP rate-limiting on a monitored interface will still be forwarded to the designated monitor port. (Monitoring shows what traffic is inbound on an interface, and is not affected by “drop” or “forward” decisions.)

- **ICMP Rate-Limit Imposes an Average Bandwidth Limit:** The configured ICMP rate limit on an interface reflects the permitted average forwarding rate for ICMP traffic from the interface to the switching fabric. (Note that while occasional bursts of traffic above the configured rate may be observed, the average rate will conform to the configured limit). Rate-Limiting is packet-based, and is calculated internally as the maximum number of 64-byte packets that can be forwarded within the configured bandwidth percentage. Where traffic includes packets larger than 64 bytes, actual average rates may be lower than the configured rate. Also, ICMP rate-limiting reflects the available percentage of an interface’s entire inbound bandwidth. The rate of inbound flow for traffic of a given priority and the rate of flow from an ICMP rate-limited interface to a particular queue of an outbound interface are not measures of the actual ICMP rate limit enforced on an interface.

- **Network Stress Conditions:** Under normal network operating conditions, ICMP rate-limiting limits inbound traffic on an interface to no more than the configured level. However, under network stress conditions, the interface may allow occasional, brief bursts of inbound traffic forwarding that exceed the configured rate.

- **Below-Maximum Rates:** ICMP rate-limiting operates on a per-interface basis, regardless of traffic priority. Configuring ICMP rate-limiting on an interface where other features affect inbound port queue behavior (such as flow control) can result in the interface not achieving its configured ICMP rate-limiting maximum. For example, in some situations with flow control configured on an ICMP rate-limited interface, there can be enough “back pressure” to hold high-priority inbound traffic from the upstream device or application to a rate that does not allow bandwidth for lower-priority ICMP traffic. In this case, the inbound traffic flow may not permit the forwarding of ICMP traffic into the switch fabric from the rate-limited interface. (This behavior is termed “head-of-line blocking” and is a well-known problem with flow-control.) In cases where both types of rate-limiting (rate-limit all and rate-limit icmp) are configured on the same interface, this situation is more likely to occur. In another type of situation, an outbound interface can become oversubscribed by traffic received...
from multiple ICMP rate-limited interfaces. In this case, the actual rate for traffic on the rate-limited interfaces may be lower than configured because the total traffic load requested to the outbound interface exceeds the interface’s bandwidth, and thus some requested traffic may be held off on inbound.

- **Optimum Rate-Limiting Operation**: Optimum rate-limiting occurs with 64-byte packet sizes. Traffic with larger packet sizes can result in performance somewhat below the configured inbound bandwidth. This is to ensure the strictest possible rate-limiting of all sizes of packets.

- **Rate-Limiting Effect on Port Trunks**: ICMP rate-limiting is not supported on ports configured in a trunk group.

- **Heavy Memory Usage**: Combinations of intensive QoS, rate-limiting, and/or IDM ACL service demands on a switch can impose heavy memory usage on the switch’s dynamic hardware rule processor, and can sometimes result in slower system performance. In such cases, moving support for some of the service load to other devices can improve performance.

- **Outbound Traffic Flow**: Configuring ICMP rate-limiting on an interface does not control the rate of outbound traffic flow on the interface.

- **Traffic Filters on Rate-Limited Interfaces**: Configuring a traffic filter on an interface does not prevent the switch from including filtered traffic in the bandwidth-use measurement for either type of rate-limiting (ICMP or all). That is, where rate-limiting and traffic filtering are configured on the same interface, the inbound, filtered traffic is included in the bandwidth measurement for calculating when the limit has been reached. Traffic filters include:
  
  - ACLs
  - Source-Port filters
  - Protocol filters
  - Multicast filters

- **Determining the Switch Port Number Used in ICMP Port Reset Commands To Enable Excess ICMP Traffic Notification Traps and Event Log Messages**: Use the internal port numbers described in this section with the `setmib` command described on page 13-15. The port number included in the command corresponds to the internal number the switch maintains for the designated port, and not the port’s external (slot/number) identity. To match the port’s external slot/number to the internal port number, use the `walkmib ifDescr` command, as shown in the following figure:
Port Traffic Controls
Guaranteed Minimum Bandwidth (GMB)

Monitoring Shared Resources: The rate-limiting feature shares internal switch resources with several other features. The switch provides ample resources for all features. However, if the internal resources become fully subscribed, additional rate-limiting provisions cannot be configured until the necessary resources are released from other uses. For information on determining the current resource availability and usage, refer to the appendix titled “Monitoring Resources” in this manual.

Guaranteed Minimum Bandwidth (GMB)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth-min output</td>
<td>Per-Queue:</td>
<td>n/a</td>
<td>page 13-21</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>2%-3%-30%-10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%-10%-15%-20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>show bandwidth output [port-list]</td>
<td>n/a</td>
<td>n/a</td>
<td>page 13-18</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Introduction

Guaranteed Minimum Bandwidth (GMB) provides a method for ensuring that each of a given port’s outbound traffic priority queues has a specified minimum consideration for sending traffic out on the link to another device. This can prevent a condition where applications generating lower-priority traffic in the network are frequently or continually "starved" by high volumes of higher-priority traffic. You can configure GMB per-port.

Terminology

**Oversubscribed Queue:** The condition where there is insufficient bandwidth allocated to a particular outbound priority queue for a given port. If additional, unused bandwidth is not available, the port delays or drops the excess traffic.

GMB Operation

The switch services per-port outbound traffic in a descending order of priority; that is, from the highest priority to the lowest priority. Each port offers eight prioritized, outbound traffic queues. Tagged VLAN traffic is prioritized according to the 802.1p priority the traffic carries. Untagged VLAN traffic is assigned a priority of “0” (normal).
Guaranteed Minimum Bandwidth (GMB)

You can use GMB to reserve a specific percentage of each port’s available outbound bandwidth for each of the eight priority queues. This means that regardless of the amount of high priority outbound traffic on a port, you can ensure that there will always be bandwidth reserved for lower-priority traffic.

Since the switch services outbound traffic according to priority (highest to lowest), the highest-priority outbound traffic on a given port automatically receives the first priority in servicing. Thus, in most applications, it is necessary only to specify the minimum bandwidth you want to allocate to the lower priority queues. In this case, the high-priority traffic automatically receives all unassigned bandwidth without starving the lower-priority queues.

Conversely, configuring a bandwidth minimum on only the high-priority outbound queue of a port (and not providing a bandwidth minimum for the lower-priority queues) is not recommended because it may “starve” the lower-priority queues. (See the Note, below.)

Table 13-1. Per-Port Outbound Priority Queues

<table>
<thead>
<tr>
<th>802.1p Priority Settings in Tagged VLAN Packets*</th>
<th>Outbound Priority Queue for a Given Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (low)</td>
<td>1</td>
</tr>
<tr>
<td>2 (low)</td>
<td>2</td>
</tr>
<tr>
<td>0 (normal)</td>
<td>3</td>
</tr>
<tr>
<td>3 (normal)</td>
<td>4</td>
</tr>
<tr>
<td>4 (medium)</td>
<td>5</td>
</tr>
<tr>
<td>5 (medium)</td>
<td>6</td>
</tr>
<tr>
<td>6 (high)</td>
<td>7</td>
</tr>
<tr>
<td>7 (high)</td>
<td>8</td>
</tr>
</tbody>
</table>

*The switch processes outbound traffic from an untagged port at the "0" (normal) priority level.
**Note**

For a given port, when the demand on one or more outbound queues exceeds the minimum bandwidth configured for those queues, the switch apportions unallocated bandwidth to these queues on a priority basis. As a result, specifying a minimum bandwidth for a high-priority queue but not specifying a minimum for lower-priority queues can starve the lower-priority queues during periods of high demand on the high priority queue. For example, if a port configured to allocate a minimum bandwidth of 80% for outbound high-priority traffic experiences a demand above this minimum, then this burst starves lower-priority queues that *do not have a minimum configured*. Normally, this will not altogether halt lower priority traffic on the network, but will likely cause delays in the delivery of the lower-priority traffic.

The sum of the GMB settings for all eight outbound queues on a given port cannot exceed 100%.

**Configuring Guaranteed Minimum Bandwidth for Outbound Traffic**

For any port or group of ports you can configure either the default minimum bandwidth settings for each outbound priority queue or a customized bandwidth allocation. For most applications, ProCurve recommends configuring GMB with the same values on all ports on the switch so that the outbound traffic profile is consistent for all outbound traffic. However, there may be instances where it may be advantageous to configure special profiles on connections to servers or to the network infrastructure (such as links to routers, other switches, or to the network core).
Syntax:  [ no ] int < port-list > bandwidth-min output

Configures the minimum bandwidth allocation for the outbound priority queue for each port in < port-list >. The default values are:

- Queue 1 (low priority): 2%
- Queue 2 (low priority): 3%
- Queue 3 (normal priority): 30%
- Queue 4 (normal priority): 10%
- Queue 5 (medium priority): 10%
- Queue 6 (medium priority): 10%
- Queue 7 (high priority): 15%
- Queue 8 (high priority): 20%

The no form of the command disables GMB for all ports in < port-list >. In this state, which is the equivalent of setting all outbound queues on a port to 0 (zero), a high level of higher-priority traffic can starve lower-priority queues, which can slow or halt lower-priority traffic in the network. You can configure bandwidth minimums from either the global configuration level (as shown above) or from the port context level. For information on outbound port queues, refer to table 13-1, “Per-Port Outbound Priority Queues” on page 13-20.
Syntax:  [ no ] int < port-list > bandwidth-min output
       [ < queue1% > < queue2% > < queue3% > < queue4% > < queue5% >
       < queue6% > < queue7% > < queue8% > ]

For ports in < port-list >, specifies the minimum outbound bandwidth as a percent of the total bandwidth for each outbound queue. The queues receive service in descending order of priority. You must specify a bandwidth percent value for all eight queues, and the sum of the bandwidth percentages must not exceed 100%. (0 is a value for a queue percentage setting. See the Note, below.) Configuring a total of less than 100% across the eight queues results in unallocated bandwidth that remains harmlessly unused unless a given queue becomes oversubscribed. In this case, the unallocated bandwidth is apportioned to oversubscribed queues in descending order of priority. For example, if you configure a minimum of 10% for queues 1 - 7, and 0% for queue 8, then the unallocated bandwidth will be available to all eight queues in the following prioritized order:

1. Queue 8 (high priority)
2. Queue 7 (high priority)
3. Queue 6 (medium priority)
4. Queue 5 (medium priority)
5. Queue 4 (normal priority)
6. Queue 3 (normal priority)
7. Queue 2 (low priority)
8. Queue 1 (low priority)

A setting of 0 (zero %) on a queue means that no bandwidth minimum is specifically reserved for that queue for each of the ports in < port-list >. Also, there is no benefit to setting the high-priority queue (queue 8) to 0 (zero) unless you want the medium queue (queue 4) to be able to support traffic bursts above its guaranteed minimum.

(continued)
Port Traffic Controls
Guaranteed Minimum Bandwidth (GMB)

Notes: Configuring 0% for a queue can result in that queue being starved if any higher queue becomes over-subscribed and is then given all unused bandwidth. The switch applies the bandwidth calculation to the link speed the port is currently using. For example, if a 10/100 Mbs port negotiates to 10 Mbps on the link, then it bases its GMB calculations on 10 Mbps; not 100 Mbps. Use show bandwidth output < port-list> to display the current GMB configuration. (The show config and show running commands do not include GMB configuration data.)

For example, suppose you wanted to configure the following outbound minimum bandwidth availability for ports A1 and A2:

<table>
<thead>
<tr>
<th>Priority of Outbound Port Queue</th>
<th>Minimum Bandwidth %</th>
<th>Effect on Outbound Bandwidth Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>20</td>
<td>Queue 8 has the first priority use of all outbound bandwidth not specifically allocated to queues 1 - 7. If, for example, bandwidth allocated to queue 5 is not being used and queues 7 and 8 become oversubscribed, queue 8 has first-priority use of the unused bandwidth allocated to queue 5.</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>Queue 7 has a guaranteed minimum bandwidth of 15% available for outbound traffic. If queue 7 becomes oversubscribed and queue 8 is not already using all of the unallocated bandwidth, then queue 7 can use the unallocated bandwidth. Also, any unused bandwidth allocated to queues 6 to queue 1 is available to queue 7 if queue 8 has not already claimed it.</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>Queue 6 has a guaranteed minimum bandwidth of 10% and, if oversubscribed, is subordinate to queues 8 and 7 in priority for any unused outbound bandwidth available on the port.</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>Queue 5 has a guaranteed minimum bandwidth of 10% and, if oversubscribed, is subordinate to queues 8, 7, and 6 for any unused outbound bandwidth available on the port.</td>
</tr>
<tr>
<td>4</td>
<td>10%</td>
<td>Queue 4 has a guaranteed minimum bandwidth of 10% and, if oversubscribed, is subordinate to queues, 8, 7, 6, and 5 for any unused outbound bandwidth available on the port.</td>
</tr>
<tr>
<td>3</td>
<td>30%</td>
<td>Queue 3 has a guaranteed minimum bandwidth of 30% and, if oversubscribed, is subordinate to queues, 8, 7, 6, 5, and 4 for any unused outbound bandwidth available on the port.</td>
</tr>
<tr>
<td>2</td>
<td>3%</td>
<td>Queue 2 has a guaranteed minimum bandwidth of 3% and, if oversubscribed, is subordinate to queues, 8, 7, 6, 5, 4, and 3 for any unused outbound bandwidth available on the port.</td>
</tr>
</tbody>
</table>
Guaranteed Minimum Bandwidth (GMB)

Either of the following commands configures ports A1 through A5 with bandwidth settings:

```
ProCurve(config)#int a1-a5 bandwidth-min output 2 3 30 10 10 10 10 15 20
ProCurve(eth-A1-A2)#bandwidth-min output 2 3 30 10 10 10 10 15 20
```

Displaying the Current Guaranteed Minimum Bandwidth Configuration

This command displays the per-port GMB configuration in the running-config file.

Syntax: `show bandwidth output [port-list]`

`Without [port-list], this command lists the GMB configuration for all ports on the switch. With [port-list], this command lists the GMB configuration for the specified ports. This command operates the same way in any CLI context. If the command lists Disabled for a port, there are no bandwidth minimums configured for any queue on the port. (Refer to the description of the no form of the bandwidth-min output command on page 13-22.)`

For example, to display the GMB configuration resulting from either of the above commands:

<table>
<thead>
<tr>
<th>Priority of Outbound Port Queue</th>
<th>Minimum Bandwidth %</th>
<th>Effect on Outbound Bandwidth Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2%</td>
<td>Queue 1 has a guaranteed minimum bandwidth of 2% and, if oversubscribed, is subordinate to all the other queues for any unused outbound bandwidth available on the port.</td>
</tr>
</tbody>
</table>
Port Traffic Controls
Guaranteed Minimum Bandwidth (GMB)

Guaranteed Minimum Bandwidth (GMB)

**Figure 13-7. Example of Listing the Guaranteed Minimum Bandwidth Configuration**

For an example listing the GMB configuration in the startup-config file, refer to figure 13-2 on page 13-6.

**GMB Operating Notes**

**Granularity of Applied GMB Settings.** Incremental bandwidth settings greater than 0 and less than 100 are internally computed in steps of 1.0%. Thus, the switch internally converts a configured bandwidth percentage to the closest multiple of 1.0.
Jumbo Packets

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>display VLAN jumbo status</td>
<td>n/a</td>
<td>—</td>
<td>13-30</td>
<td>—</td>
</tr>
<tr>
<td>configure jumbo VLANs</td>
<td>Disabled</td>
<td>—</td>
<td>13-32</td>
<td>—</td>
</tr>
</tbody>
</table>

The Maximum Transmission Unit (MTU) is the maximum size IP packet the switch can receive for Layer 2 packets inbound on a port. The switch drops any inbound packets larger than the MTU allowed on the port. On ports operating at 10 Mbps or 100 Mbps, the MTU is fixed at 1522 bytes. However, ports operating at 1 Gbs or 10 Gbps speeds accept forward packets of up to 9220 bytes (including four bytes for a VLAN tag) when configured for jumbo traffic. You can enable inbound jumbo packets on a per-VLAN basis. That is, on a VLAN configured for jumbo traffic, all ports belonging to that VLAN and operating at 1 Gbs or 10 Gbps allow inbound jumbo packets of up to 9220 bytes. (Regardless of the mode configured on a given jumbo-enabled port, if the port is operating at only 10 Mbps or 100 Mbps, only packets that do not exceed 1522 bytes are allowed inbound on that port.)

Terminology

**Jumbo Packet:** An IP packet exceeding 1522 bytes in size. The maximum Jumbo packet size is 9220 bytes. (This size includes 4 bytes for the VLAN tag.)

**Jumbo VLAN:** A VLAN configured to allow inbound jumbo traffic. All ports belonging to a jumbo and operating at 1 Gbps or higher can receive jumbo packets from external devices. If the switch is in a meshed domain, then all meshed ports (operating at 1 Gbps or higher) on the switch will accept jumbo traffic from other devices in the mesh.

**MTU (Maximum Transmission Unit):** This is the maximum-size IP packet the switch can receive for Layer 2 packets inbound on a port. The switch allows jumbo packets of up to 9220 bytes.

**Standard MTU:** An IP packet of 1522 bytes in size. (This size includes 4 bytes for the VLAN tag.)
Operating Rules

- **Required Port Speed:** Allow inbound and outbound jumbo packets on ports operating at speeds of 1 gigabit or higher. At lower port speeds, only standard (1522-byte or smaller) packets are allowed, regardless of the jumbo configuration.

- **Flow Control:** Disable flow control (the default setting) on any ports or trunks through which you want to transmit or receive jumbo packets. Leaving flow control enabled on a port can cause a high rate of jumbo drops to occur on the port.

- **Switch Meshing:** If you enable jumbo traffic on a VLAN, then all meshed ports on the switch will be enabled to support jumbo traffic. (On a given meshed switch, every meshed port operating at 1 Gbps or higher becomes a member of every VLAN configured on the switch.)

- **GVRP Operation:** A VLAN enabled for jumbo traffic cannot be used to create a dynamic VLAN. A port belonging to a statically configured, jumbo-enabled VLAN cannot join a dynamic VLAN.

- **Port Adds and Moves:** If you add a port to a VLAN that is already configured for jumbo traffic, the switch enables that port to receive jumbo traffic. If you remove a port from a jumbo-enabled VLAN, the switch disables jumbo traffic capability on the port only if the port is not currently a member of another jumbo-enabled VLAN. This same operation applies to port trunks.

- **Jumbo Traffic Sources:** A port belonging to a jumbo-enabled VLAN can receive inbound jumbo packets through any VLAN to which it belongs, including non-jumbo VLANs. For example, if VLAN 10 (without jumbos enabled) and VLAN 20 (with jumbos enabled) are both configured on a switch, and port 1 belongs to both VLANs, then port 1 can receive jumbo traffic from devices on either VLAN. For a method to allow only some ports in a VLAN to receive jumbo traffic, refer to “Operating Notes for Jumbo Traffic-Handling” on page 13-32.
Configuring Jumbo Packet Operation

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vlans</td>
<td>13-30</td>
</tr>
<tr>
<td>show vlans ports &lt; port-list&gt;</td>
<td>13-31</td>
</tr>
<tr>
<td>show vlans &lt; vid &gt;</td>
<td>13-32</td>
</tr>
<tr>
<td>jumbo</td>
<td>13-32</td>
</tr>
</tbody>
</table>

Overview

1. Determine the VLAN membership of the ports or trunks through which you want the switch to accept inbound jumbo traffic. For operation with GVRP enabled, refer to the GVRP topic under “Operating Rules”, above.

2. Ensure that the ports through which you want the switch to receive jumbo packets are operating at least at gigabit speed. (Check the Mode field in the output for the show interfaces brief < port-list > command.)

3. Use the jumbo command to enable jumbo packets on one or more VLANs statically configured in the switch. (All ports belonging to a jumbo-enabled VLAN can receive jumbo packets.

4. Execute write memory to save your configuration changes to the startup-config file.
Viewing the Current Jumbo Configuration

**Syntax:** show vlans

Lists the static VL ANs configured on the switch and includes a Jumbo column to indicate which VL ANs are configured to support inbound jumbo traffic. All ports belonging to a jumbo-enabled VLAN can receive jumbo traffic. (For more information refer to “Operating Notes for Jumbo Traffic-Handling” on page 13-32.) See figure 13-8, below.

<table>
<thead>
<tr>
<th>Status and Counters - VLAN Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum VL ANs to support : 8</td>
</tr>
<tr>
<td>Primary VLAN : DEFAULT_VLAN</td>
</tr>
<tr>
<td>Management VLAN :</td>
</tr>
<tr>
<td>802.1Q VL AN ID Name</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>1  DEFAULT_VLAN</td>
</tr>
<tr>
<td>5  VLAN5</td>
</tr>
<tr>
<td>22 VLAN22</td>
</tr>
</tbody>
</table>

Figure 13-8. Example Listing of Static VL ANs To Show Jumbo Status Per VLAN

**Syntax:** show vlans ports < port-list >

Lists the static VL ANs to which the specified port(s) belong, including the Jumbo column to indicate which VL ANs are configured to support jumbo traffic. Entering only one port in < port-list > results in a list of all VL ANs to which that port belongs. Entering multiple ports in < port-list > results in a superset list that includes the VL AN memberships of all ports in the list, even though the individual ports in the list may belong to different subsets of the complete VL AN listing. For example, if port 1 belongs to VL AN 1, port 2 belongs to VL AN 10, and port 3 belongs to VL AN 15, then executing this command with a < port-list > of 1-3 results in a listing of all three VL ANs, even though none of the ports belong to all three VL ANs. (Refer to figure 13-9.)
Port Traffic Controls
Jumbo Packets

Syntax: show vlans < vid >

This command shows port membership and jumbo configuration for the specified < vid >.

Figure 13-9. Example of Listing the VLAN Memberships for a Range of Ports

<table>
<thead>
<tr>
<th>VLAN ID</th>
<th>Name</th>
<th>Status</th>
<th>Voice</th>
<th>Jumbo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFAULT_VLAN</td>
<td>Port-based</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>VLAN10</td>
<td>Port-based</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>15</td>
<td>VLAN15</td>
<td>Port-based</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 13-10. Example of Listing the Port Membership and Jumbo Status for a VLAN

<table>
<thead>
<tr>
<th>Port</th>
<th>Information Mode</th>
<th>Unknown VLAN Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tagged</td>
<td>Learn</td>
</tr>
<tr>
<td>2</td>
<td>Tagged</td>
<td>Learn</td>
</tr>
<tr>
<td>3</td>
<td>Tagged</td>
<td>Learn</td>
</tr>
<tr>
<td>4</td>
<td>Tagged</td>
<td>Learn</td>
</tr>
<tr>
<td>5</td>
<td>Tagged</td>
<td>Learn</td>
</tr>
</tbody>
</table>
Enabling or Disabling Jumbo Traffic on a VLAN

**Syntax:** vlan < vid > jumbo

\[ \text{no} \] vlan < vid > jumbo

*Configures the specified VLAN to allow jumbo packets on all ports on the switch that belong to that VLAN. If the VLAN is not already configured on the switch, vlan < vid > jumbo also creates the VLAN. Note that a port belonging to one jumbo VLAN can receive jumbo packets through any other VLAN statically configured on the switch, regardless of whether the other VLAN is enabled for jumbo packets. The [no] form of the command disables inbound jumbo traffic on all ports in the specified VLAN that do not also belong to another VLAN that is enabled for jumbo traffic. In a VLAN context, the command forms are jumbo and no jumbo. (Default: Jumbos disabled on the specified VLAN.)*

---

**Operating Notes for Jumbo Traffic-Handling**

- ProCurve does not recommend configuring a voice VLAN to accept jumbo packets. Voice VLAN packets are typically small, and allowing a voice VLAN to accept jumbo packet traffic can degrade the voice transmission performance.

- You can configure the default, primary, and/or (if configured) the management VLAN to accept jumbo packets on all ports belonging to the VLAN.

- When the switch applies the default MTU (1522-bytes) to a VLAN, all ports in the VLAN can receive incoming packets of up to 1522 bytes in length. When the switch applies the jumbo MTU (9220 bytes) to a VLAN, all ports in that VLAN can receive incoming packets of up to 9220 bytes in length. A port receiving packets exceeding the applicable MTU drops such packets, causing the switch to generate an Event Log message and increment the “Giant Rx” counter (displayed by show interfaces < port-list >).

- The switch does not allow flow control and jumbo packet capability to co-exist on a port. Attempting to configure both on the same port generates an error message in the CLI and sends a similar message to the Event Log.

- The default MTU is 1522 bytes (including 4 bytes for the VLAN tag). The jumbo MTU is 9220 bytes (including 4 bytes for the VLAN tag).

- When a port is not a member of any jumbo-enabled VLAN, it drops all jumbo traffic. If the port is receiving "excessive" inbound jumbo traffic, the port generates an Event Log message to notify you of this condition.
This same condition generates a Fault-Finder message in the Alert log of the switch’s web browser interface, and also increments the switch’s “Giant Rx” counter.

- If you do not want all ports in a given VLAN to accept jumbo packets, you can consider creating one or more jumbo VLANs with a membership comprised of only the ports you want to receive jumbo traffic. Because a port belonging to one jumbo-enabled VLAN can receive jumbo packets through any VLAN to which it belongs, this method enables you to include both jumbo-enabled and non-jumbo ports within the same VLAN. For example, suppose you wanted to allow inbound jumbo packets only on ports 6, 7, 12, and 13. However, these ports are spread across VLAN 100 and VLAN 200, and also share these VLANs with other ports you want excluded from jumbo traffic. A solution is to create a third VLAN with the sole purpose of enabling jumbo traffic on the desired ports, while leaving the other ports on the switch disabled for jumbo traffic. That is:

<table>
<thead>
<tr>
<th>VLAN 100</th>
<th>VLAN 200</th>
<th>VLAN 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports</td>
<td>6-10</td>
<td>11-15</td>
</tr>
<tr>
<td>Jumbo-</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Enabled?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If there are security concerns with grouping the ports as shown for VLAN 300, you can either use source-port filtering to block unwanted traffic paths or create separate jumbo VLANs, one for ports 6 and 7, and another for ports 12 and 13.

- **Outbound Jumbo Traffic.** Any port operating at 1 Gbps or higher can transmit outbound jumbo packets through any VLAN, regardless of the jumbo configuration. The VLAN is not required to be jumbo-enabled, and the port is not required to belong to any other, jumbo enabled VLANs. This can occur in situations where a non-jumbo VLAN includes some ports that do not belong to another, jumbo-enabled VLAN and some ports that do belong to another, jumbo-enabled VLAN. In this case, ports capable of receiving jumbo packets can forward them to the ports in the VLAN that do not have jumbo capability.
Jumbo packets can also be forwarded out non-jumbo ports when the jumbo packets received inbound on a jumbo-enabled VLAN are routed to another, non-jumbo VLAN for outbound transmission on ports that have no memberships in other, jumbo-capable VLANs. Where either of the above scenarios is a possibility, the downstream device must be configured to accept the jumbo traffic. Otherwise, this traffic will be dropped by the downstream device.

**Jumbo Traffic in a Switch Mesh Domain.** Note that if a switch belongs to a meshed domain, but does not have any VLANs configured to support jumbo traffic, then the meshed ports on that switch will drop any jumbo packets they receive from other devices. In this regard, if a mesh domain includes any ProCurve 1600M/2400M/2424M/4000M/8000M switches along with the switches covered in this guide configured to support jumbo traffic, only the switches covered in this guide will receive jumbo packets. The other switch models in the mesh will drop such packets. For more information on switch meshing, refer to the chapter titled “Switch Meshing” in the *Advanced Traffic Management Guide* for your switch.
Troubleshooting

A VLAN is configured to allow jumbo packets, but one or more ports drops all inbound jumbo packets. The port may not be operating at 1 gigabit or higher. Regardless of a port’s configuration, if it is actually operating at a speed lower than 1 gigabit, it drops inbound jumbo packets. For example, if a port is configured for Auto mode (speed-duplex auto), but has negotiated a 100 Mbps speed with the device at the other end of the link, then the port cannot receive inbound jumbo packets. To determine the actual operating speed of one or more ports, view the Mode field in the output for the following command:

    show interfaces brief < port-list >

A non-jumbo port is generating “Excessive undersize/giant packets” messages in the Event Log. The switches can transmit outbound jumbo traffic on any port, regardless of whether the port belongs to a jumbo VLAN. In this case, another port in the same VLAN on the switch may be jumbo-enabled through membership in a different, jumbo-enabled VLAN, and may be forwarding jumbo packets received on the jumbo VLAN to non-jumbo ports. Refer to “Outbound Jumbo Traffic” on page 13-33.
Configuring for Network Management Applications

Contents

Using SNMP Tools To Manage the Switch ........................................ 14-3
  Overview ................................................................. 14-3
  SNMP Management Features ............................................. 14-4
  Configuring for SNMP Access to the Switch ............................. 14-4
  Configuring for SNMP Version 3 Access to the Switch ..................... 14-5
  SNMP Version 3 Commands ............................................. 14-6
    Enabling SNMPv3 ...................................................... 14-7
    SNMPv3 Users ......................................................... 14-7
    Group Access Levels .................................................. 14-10
    SNMPv3 Communities .................................................. 14-11
  Menu: Viewing and Configuring non-SNMP version 3 Communities ............. 14-13
  CLI: Viewing and Configuring SNMP Community Names ................. 14-14
  SNMPv3 Notification and Traps ....................................... 14-16
    SNMPv1 and SNMPv2c Trap Features ................................ 14-19
    CLI: Configuring and Displaying Trap Receivers ..................... 14-19
    Using the CLI To Enable Authentication Traps ...................... 14-22
  Advanced Management: RMON ........................................ 14-23

LLDP (Link-Layer Discovery Protocol) ........................................... 14-24
  Terminology .......................................................... 14-25
  General LLDP Operation .............................................. 14-27
    LLDP-MED ............................................................ 14-27
  Packet Boundaries in a Network Topology .............................. 14-27
  Configuration Options ................................................. 14-28
  Options for Reading LLDP Information Collected by the Switch ........... 14-30
  LLDP and LLDP-MED Standards Compatibility ........................... 14-30
Configuring for Network Management Applications

Contents

- LLDP Operating Rules ................................................. 14-31
- Configuring LLDP Operation ........................................ 14-32
  - Viewing the Current Configuration ............................... 14-32
  - Configuring Global LLDP Packet Controls ..................... 14-34
  - Configuring SNMP Notification Support ......................... 14-38
  - Configuring Per-Port Transmit and Receive Modes ........ .... 14-39
  - Configuring Basic LLDP Per-Port Advertisement Content ..... 14-40
  - Configuring Support for Port Speed and Duplex Advertisements ........................................... 14-42
- LLDP-MED (Media-Endpoint-Discovery) ............................ 14-43
  - LLDP-MED Topology Change Notification ......................... 14-46
  - LLDP-MED Fast Start Control .................................... 14-48
  - Advertising Device Capability, Network Policy, PoE Status and Location Data .................................. 14-48
  - Configuring Location Data for LLDP-MED Devices ........... 14-53
- Displaying Advertisement Data ..................................... 14-58
  - Displaying Switch Information Available for Outbound Advertisements .............................................. 14-59
  - Displaying LLDP Statistics ....................................... 14-64
- LLDP Operating Notes .................................................. 14-66
- LLDP and CDP Data Management ................................... 14-68
  - LLDP and CDP Neighbor Data ..................................... 14-68
  - CDP Operation and Commands .................................... 14-70
Using SNMP Tools To Manage the Switch

Overview

You can manage the switch via SNMP from a network management station running an application such as ProCurve Manager (PCM) or ProCurve Manager Plus (PCM+). For more on PCM and PCM+, visit the ProCurve Networking web site at:

www.procurve.com

Click on products index in the sidebar, then click on the appropriate link appearing under the Network Management heading.

This section includes:

- An overview of SNMP management for the switch
- Configuring the switches for:
  - SNMP Communities (page 14-11)
  - Trap Receivers and Authentication Traps (page 14-16)
- Information on advanced management through RMON Support (page 14-23)

To implement SNMP management, the switch must have an IP address, configured either manually or dynamically (using DHCP or Bootp). If multiple VLANs are configured, each VLAN interface should have its own IP address. For DHCP use with multiple VLANs, refer to the section titled “The Primary VLAN” in the “Static Virtual LANs (VLANs)” chapter of the Advanced Traffic Management Guide for your switch.

Note

If you use the switch’s Authorized IP Managers and Management VLAN features, ensure that the SNMP management station and/or the choice of switch port used for SNMP access to the switch are compatible with the access controls enforced by these features. Otherwise, SNMP access to the switch will be blocked. For more on Authorized IP Managers, refer to the Access Security Guide for your switch. (The latest version of this guide is available on the ProCurve Networking web site.) For information on the Management VLAN feature, refer to the section titled “The Secure Management VLAN” in the “Static Virtual LANs (VLANs)” chapter of the Advanced Traffic Management Guide for your switch.
SNMP Management Features

SNMP management features on the switch include:
- SNMP version 1, version 2c, or version 3 over IP
- Security via configuration of SNMP communities (page 14-11)
- Security via authentication and privacy for SNMP Version 3 access
- Event reporting via SNMP
  - Version 1 traps
  - RMON: groups 1, 2, 3, and 9
- ProCurve Manager/Plus support
- Flow sampling using sFlow
- Standard MIBs, such as the Bridge MIB (RFC 1493), Ethernet MAU MIB (RFC 1515), and others.

The switch SNMP agent also uses certain variables that are included in a Hewlett-Packard proprietary MIB (Management Information Base) file. If you are using HP OpenView, you can ensure that it is using the latest version of the MIB file by downloading the file to the OpenView database. To do so, go to the ProCurve Networking web site at:

www.procurve.com

Click on software updates, then MIBs.

Configuring for SNMP version 1 and 2c Access to the Switch

SNMP access requires an IP address and subnet mask configured on the switch. (Refer to “IP Configuration” on page 8-2.) If you are using DHCP/Bootp to configure the switch, ensure that the DHCP/Bootp process provides the IP address. (Refer to “DHCP/Bootp Operation” on page 8-12.)

Once an IP address has been configured, the main steps for configuring SNMP version 1 and version 2c access management features are:

1. Configure the appropriate SNMP communities. (Refer to “SNMPv3 Communities” on page 14-11.)

2. Configure the appropriate trap receivers. (Refer to “SNMPv3 Notification and Traps” on page 14-16.)

In some networks, authorized IP manager addresses are not used. In this case, all management stations using the correct community name may access the switch with the View and Access levels that have been set for that community.
If you want to restrict access to one or more specific nodes, you can use the switch’s IP Authorized Manager feature. (Refer to the *Access Security Guide* for your switch.)

**Caution**

For ProCurve Manager (PCM) version 1.5 or earlier (or any TopTools version), deleting the “public” community disables some network management functions (such as traffic monitoring, SNMP trap generation, and threshold setting). If network management security is a concern, and you are using the above software versions, ProCurve recommends that you change the write access for the “public” community to “Restricted”.

### Configuring for SNMP Version 3 Access to the Switch

SNMP version 3 (SNMPv3) access requires an IP address and subnet mask configured on the switch. (Refer to “IP Configuration” on page 8-2.) If you are using DHCP/Bootp to configure the switch, ensure that the DHCP/Bootp process provides the IP address. (See “DHCP/Bootp Operation” on page 8-12.)

Once an IP address has been configured, the main steps for configuring SNMP version 3 access management features are:

1. Enable SNMPv3 for operation on the switch (Refer to “SNMP Version 3 Commands” on page 14-6)
2. Configure the appropriate SNMP users (Refer to “SNMPv3 Users” on page 14-7)
3. Configure the appropriate SNMP communities. (Refer to “SNMPv3 Communities” on page 14-11.)
4. Configure the appropriate trap receivers. (Refer to “SNMPv3 Notification and Traps” on page 14-16.)

In some networks, authorized IP manager addresses are not used. In this case, all management stations using the correct User and community name may access the switch with the View and Access levels that have been set for that community. If you want to restrict access to one or more specific nodes, you can use the switch’s IP Authorized Manager feature. (Refer to the *Access Security Guide* for your switch.)
SNMP Version 3 Commands

SNMP version 3 (SNMPv3) adds a new command to the CLI for configuring SNMPv3 functions. To enable SNMPv3 operation on the switch you must:

a. Enable SNMPv3 with the **snmpv3 enable** command. An initial user entry will be generated with MD5 authentication and DES privacy.

b. You may restrict access to only SNMPv3 agents with the **snmpv3 only** command. A second option would be to restrict write access to only SNMPv3 agents with the **snmpv3 restricted-access** command.

Caution

Restricting access to only version 3 messages will make the community named “public” inaccessible to network management applications (such as auto-discovery, traffic monitoring, SNMP trap generation, and threshold setting) from operating in the switch.

Syntax:

- **[no] snmpv3 enable**
  
  *Enable and disable the switch for access from SNMPv3 agents. This includes the creation of the initial user record.*

- **[no] snmpv3 only**
  
  *Enables or disables restrictions to access from only SNMPv3 agents. When enabled, the switch will reject all non-SNMPv3 messages.*

- **[no] snmpv3 restricted-access**
  
  *Enables or disables restrictions from all non-SNMPv3 agents to read only access.*

- **show snmpv3 enable**
  
  *Displays the operating status of SNMPv3.*

- **show snmpv3 only**
  
  *Displays status of message reception of non-SNMPv3 messages.*

- **show snmpv3 restricted-access**
  
  *Displays status of write messages of non-SNMPv3 messages.*
Enabling SNMPv3

The `snmpv3 enable` command starts a dialog that performs three functions: enabling the switch to receive SNMPv3 messages, configuring the initial users, and, optionally, to restrict non-version 3 messages to “read only”. Figure 14-1 shows an example of this dialog.

For most SNMPv3 management software to be able to create new users, they must have an initial user record clone. These records can be downgraded, given less features, but not upgraded with new features added. For this reason it is recommended that a second user with SHA and DES are created at the time you enable SNMPv3.

SNMPv3 Users

The second step to use SNMPv3 on the switch is to configure the users that will be assigned to different groups. To establish users on the switch:

1. Add the users to the User Table. This is done with the `snmpv3 user` command. To view the users in the list you use the `show snmpv3 user` command. Refer to “Adding Users” on page 14-8.
2. Assign users to Security Groups based on their security model. This is done with the `snmpv3 group` command. Refer to “Assigning Users to Groups” on page 14-9.

**Caution**

Adding a user without authentication and/or privacy to a group that requires it, will cause the user to not be able to access the switch. You should only add users to the group that is appropriate for their security parameters.

**Adding Users.** To establish a user you must first add the user names to the list of known users. Add user names with the `snmpv3 user` CLI command.

```
ProCurve (config)# snmpv3 user NetworkAdmin
ProCurve (config)# [snmpv3 user NetworkMgr auth md5 authpass priv privpass]
```

```
ProCurve (config)# show snmpv3 user

Status and Counters - SNMP v3 Global Configuration Information

<table>
<thead>
<tr>
<th>User Name</th>
<th>Auth. Protocol</th>
<th>Privacy Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetworkAdmin</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>NetworkMgr</td>
<td>MD5</td>
<td>des</td>
</tr>
<tr>
<td>initial</td>
<td>MD5</td>
<td>des</td>
</tr>
<tr>
<td>templateSHA</td>
<td>SHA</td>
<td>des</td>
</tr>
</tbody>
</table>
```

**Figure 14-2. Adding and showing Users for SNMPv3**

**SNMPv3 Commands**

**Syntax:** `[no] snmpv3 user <user_name>`

*Adds or Deletes a user entry for snmpv3. Authorization and privacy are optional, but to use privacy, you must use authorization. When deleting a user, only the **user_name** is required.*

`[auth <md5 | sha> <auth_pass>]`
With authorization, you can select either MD5 authentication or sha authentication. The auth_pass must be 6-32 characters in length and must be included when authentication is included. (Default: None)

```
[priv <priv_pass>]
```

With privacy, the switch only supports DES (56-bit) encryption. The privacy password priv_pass must be 6-32 characters in length and must be included when using the priv parameter. (Default: None)

Assigning Users to Groups. Then you must set the group access level for the user by assigning the user to a group. This is done with the `snmpv3 group` command. For more details on the MIBs access for a given group refer to “Group Access Levels” on page 14-10.

```
ProCurve(config)# snmpv3 group operator noauth user NetworkAdmin sec-model ver3
ProCurve(config)# snmpv3 group manager priv user NetworkMgr sec-model ver3
ProCurve(config)# show snmpv3 group
```

**Figure 14-3. Example of Assigning Users to Groups**

**SNMPv3 Group Commands**

**Syntax:** `[no] snmpv3 group

This command assigns or removes a user to a security group for access rights to the switch. To delete an entry, all of the following three parameters must be included in the command.

```
group <group_name>
```
This parameter identifies the group that has the privileges that will be assigned to the user. For more details refer to “Group Access Levels” on page 14-10.

user <user_name>

This parameter identifies the user to be added to the access group. This must match the user name added with the snmpv3 user command.

sec-model <ver1 | ver2c | ver3>

This defines which security model to use for the added user. A SNMPv3 access Group should only use the ver3 security model.

### Group Access Levels

The switch supports eight predefined group access levels. There are four levels for use with version 3 users and four are used for access by version 2c or version 1 management applications.

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Group Access Type</th>
<th>Group Read View</th>
<th>Group Write View</th>
</tr>
</thead>
<tbody>
<tr>
<td>managerpriv</td>
<td>Ver3 Must have Authentication and Privacy</td>
<td>ManagerReadView</td>
<td>ManagerWriteView</td>
</tr>
<tr>
<td>managerauth</td>
<td>Ver3 Must have Authentication</td>
<td>ManagerReadView</td>
<td>ManagerWriteView</td>
</tr>
<tr>
<td>operatorauth</td>
<td>Ver3 Must have Authentication</td>
<td>OperatorReadView</td>
<td>DiscoveryView</td>
</tr>
<tr>
<td>operatornoauth</td>
<td>Ver3 No Authentication</td>
<td>OperatorReadView</td>
<td>DiscoveryView</td>
</tr>
<tr>
<td>commanagerrw</td>
<td>Ver2c or Ver1</td>
<td>ManagerReadView</td>
<td>ManagerWriteView</td>
</tr>
<tr>
<td>commanagerr</td>
<td>Ver2c or Ver1</td>
<td>ManagerReadView</td>
<td>DiscoveryView</td>
</tr>
<tr>
<td>comoperatorrw</td>
<td>Ver2c or Ver1</td>
<td>OperatorReadView</td>
<td>OperatorReadView</td>
</tr>
<tr>
<td>comoperator</td>
<td>Ver2c or Ver1</td>
<td>OperatorReadView</td>
<td>DiscoveryView</td>
</tr>
</tbody>
</table>

Each view allows you to view or modify a different set of MIBs.

- **Manager Read View** – access to all managed objects
- **Manager Write View** – access to all managed objects except the following: vacmContextTable, vacmAccessTable, vacmViewTreeFamilyTable
- **Operator Read View** – no access to icfSecurityMIB, hpSwitchIpTftp-Mode, vacmContextTable, vacmAccessTable, vacmViewTreeFamilyTable, usmUserTable, snmpCommunityTable
- **Discovery View** – Access limited to samplingProbe MIB.
All access groups and views are predefined on the switch. There is no method to modify or add groups or views to those that are pre-defined on the switch.

SNMPv3 Communities

SNMP communities are supported by the switch to allow management applications that use version 2c or version 1 to access the switch. The communities are mapped to Group Access Levels that are used for version 2c or version 1 support. For more information refer to “Group Access Levels” on page 14-10. This mapping will happen automatically based on the communities access privileges, but special mappings can be added with the `snmpv3 community` command.

**Syntax:**

```plaintext
[no] snmpv3 community

This command maps or removes a mapping of a community name to a group access level. To remove a mapping you, only need to specify the `index_name` parameter.

index <index_name>

This is an index number or title for the mapping. The values of 1-5 are reserved and can not be mapped.

name <community_name>

This is the community name that is being mapped to a group access level.

sec-name <security_name>

This is the group level to which the community is being mapped. For more information refer to “Group Access Levels” on page 14-10.

tag <tag_value>

This is used to specify which target address may have access by way of this index reference.
Figure 14-4 shows the assigning of the Operator community on MgrStation1 to the CommunityOperatorReadWrite group. Any other Operator only has an access level of CommunityOperatorReadOnly.

ProCurve (config)# snmpv3 community index 30 name Operator sec-name CommunityManagerReadWrite tag MgrStation1

ProCurve (config)# show snmpv3 community

```
snmpCommunityTable [rfc2576]

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Community Name</th>
<th>Security Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>public</td>
<td></td>
<td>CommunityManagerReadWrite</td>
</tr>
<tr>
<td>2</td>
<td>Operator</td>
<td></td>
<td>CommunityOperatorReadOnly</td>
</tr>
<tr>
<td>3</td>
<td>Manager</td>
<td></td>
<td>CommunityManagerReadWrite</td>
</tr>
<tr>
<td>30</td>
<td>Operator</td>
<td></td>
<td>CommunityManagerReadWrite</td>
</tr>
</tbody>
</table>
```

Figure 14-4: Assigning a Community to a Group Access Level

### SNMP Community Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>show SNMP communities</td>
<td>n/a</td>
<td>page 14-13</td>
<td>page 14-14</td>
<td>—</td>
</tr>
<tr>
<td>configure identity information</td>
<td>none</td>
<td>—</td>
<td>page 14-15</td>
<td>—</td>
</tr>
<tr>
<td>configure community names</td>
<td>public</td>
<td>page 14-13</td>
<td>page 14-15</td>
<td>—</td>
</tr>
<tr>
<td>MIB view for a community name</td>
<td>manager</td>
<td>“”</td>
<td>“”</td>
<td>—</td>
</tr>
<tr>
<td>(operator, manager)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>write access for default</td>
<td>unrestricted</td>
<td>“”</td>
<td>“”</td>
<td>—</td>
</tr>
<tr>
<td>community name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use SNMP communities to restrict access to the switch by SNMP management stations by adding, editing, or deleting SNMP communities. You can configure up to five SNMP communities, each with either an operator-level or a manager-level view, and either restricted or unrestricted write access.

Using SNMP requires that the switch have an IP address and subnet mask compatible with your network.
For ProCurve Manager (PCM) version 1.5 or earlier (or any TopTools version), deleting the “public” community disables some network management functions (such as traffic monitoring, SNMP trap generation, and threshold setting). If network management security is a concern, and you are using the above software versions, ProCurve recommends that you change the write access for the “public” community to “Restricted”.

Menu: Viewing and Configuring non-SNMP version 3 Communities

To View, Edit, or Add SNMP Communities:

1. From the Main Menu, Select:
   
   2. Switch Configuration...
   
   6. SNMP Community Names

---

**Note:** This screen gives an overview of the SNMP communities that are currently configured. All fields in this screen are read-only.

---

**Figure 14-5. The SNMP Communities Screen (Default Values)**

2. Press [A] (for Add) to display the following screen:
Configuring for Network Management Applications
Using SNMP Tools To Manage the Switch

If you are adding a community, the fields in this screen are blank.
If you are editing an existing community, the values for the currently selected Community appear in the fields.

---

**Figure 14-6. The SNMP Add or Edit Screen**

Need Help? If you need information on the options in each field, press [Enter] to move the cursor to the Actions line, then select the Help option on the Actions line. When you are finished with Help, press [E] (for Edit) to return the cursor to the parameter fields.

3. Enter the name you want in the Community Name field, and use the Space bar to select the appropriate value in each of the other fields. (Use the [Tab] key to move from one field to the next.)

4. Press [Enter], then [S] (for Save).

**CLI: Viewing and Configuring SNMP Community Names**

<table>
<thead>
<tr>
<th>Community Name Commands</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show snmp-server [&lt;community-string&gt;]</td>
<td>14-14</td>
</tr>
<tr>
<td>[no] snmp-server</td>
<td>14-15</td>
</tr>
<tr>
<td>[community &lt;community-string&gt;]</td>
<td>14-15</td>
</tr>
<tr>
<td>[host &lt;community-string&gt; &lt;ip-addr&gt;]</td>
<td>14-20</td>
</tr>
<tr>
<td>[authentication]</td>
<td></td>
</tr>
</tbody>
</table>

**Listing Community Names and Values.** This command lists the data for currently configured SNMP community names (along with trap receivers and the setting for authentication traps — refer to “SNMPv3 Notification and Traps” on page 14-16).

**Syntax:** show snmp-server [<community-string>]
This example lists the data for all communities in a switch; that is, both the default “public” community name and another community named "blue-team"

ProCurve# show snmp-server

SNMP Communities

<table>
<thead>
<tr>
<th>Community Name</th>
<th>MIB View</th>
<th>Write Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>Manager</td>
<td>Unrestricted</td>
</tr>
<tr>
<td>blue-team</td>
<td>Operator</td>
<td>Restricted</td>
</tr>
</tbody>
</table>

Send Authentication Traps [No] : No

Address | Community | Events Sent in Trap
---------|-----------|---------------------
---------|-----------|---------------------

Figure 14-7. Example of the SNMP Community Listing with Two Communities

To list the data for only one community, such as the “public” community, use the above command with the community name included. For example:

ProCurve# show snmp-server public

Configuring Community Names and Values. The `snmp-server` command enables you to add SNMP communities with either default or specific access attributes, and to delete specific communities.

**Syntax:** `[no] snmp-server community <community-name>`

Configures a new community name. If you do not also specify `operator` or `manager`, the switch automatically assigns the community to the `operator` MIB view. If you do not specify `restricted` or `unrestricted`, the switch automatically assigns the community to `restricted` (read-only) access. The `no` form uses only the `<community-name>` variable and deletes the named community from the switch.

[operator | manager]

*Optionally assigns an access level. At the `operator` level the community can access all MIB objects except the `CONFIG MIB`. At the `manager` level the community can access all MIB objects.*
[restricted | unrestricted]

Optionally assigns MIB access type. Assigning the restricted type allows the community to read MIB variables, but not to set them. Assigning the unrestricted type allows the community to read and set MIB variables.

For example, to add the following communities:

<table>
<thead>
<tr>
<th>Community</th>
<th>Access Level</th>
<th>Type of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>red-team</td>
<td>manager</td>
<td>unrestricted (read/write)</td>
</tr>
<tr>
<td></td>
<td>(Access to all MIB objects.)</td>
<td></td>
</tr>
<tr>
<td>blue-team</td>
<td>operator</td>
<td>restricted (read-only)</td>
</tr>
<tr>
<td></td>
<td>(Access to all MIB objects except the CONFIG MIB.)</td>
<td></td>
</tr>
</tbody>
</table>

ProCurve(config)# snmp-server community red-team manager unrestricted
ProCurve(config)# snmp-server community blue-team operator restricted

To eliminate a previously configured community named "gold-team":

ProCurve(config) # no snmp-server community gold-team

### SNMPv3 Notification and Traps

The switches covered in this guide support the SNMPv3 notification process. They also support version 1 or version 2c traps. For more information on version 1 or version 2c traps, refer to “SNMPv1 and SNMPv2c Trap Features” on page 14-19. The SNMPv3 notification process allows for the messages passed to be authenticated and encrypted if you choose. To set up a SNMPv3 notification there are three steps:

1. Establish a Notification with the `snmpv3 notify` command
2. Point the notification to an Address with the `snmpv3 targetaddress` command.
3. Establish a parameter record for the target address with the `snmpv3 params` command.
**Syntax:** [no] snmpv3 notify <notify_name> tag <tag_name>

This adds or deletes a notification request. To remove a mapping you only need the `<notify_name>`.

[no] snmpv3 targetaddress <name> params
<parms_name> <ip-addr>

Add or delete an address where notification messages are sent. The `<tag>` value must match the tag value of a notify entry.

filter < none | debug | all | not-info | critical>

This filters messages to restrict the types of messages transmitted to an address. (Default: none)

udp-port < port >

This specifies the UDP port to use. (Default: 162)

port-mask < mask >

Used to specify a range of UDP ports. (Default: 0)

addr-mask < mask >

Used to specify a range of addresses as destinations for notify messages. (Default: 0)

retries < value >

Number of times to retransmit a message when no response is reviewed. (Default: 3) Range: 1-255.

timeout <value>

Specifies how long the switch waits for a response from the target before it retransmits the packet. (Default: 1500) Range: 0-2147483647

max-msg-size <size> Default: 1472

Specifies the maximum number of bytes a message to this target can contain.

taglist <tag-params>

Set the list of values used to select this entry from snmpNotifyTable.

Note: You are only allowed up to 103 characters for this value.
[no] snmpv3 params <params_name> user <user_name>

Adds or deletes a user parameter for use with target address. The params_name must match the params_name in the targetaddress command. The user_name should be a user from the User Table. For more information on users refer to “SNMPv3 Users” on page 14-7. A complete params command must also have a sec-model and msg-processing entry.

< sec-model < ver1 | ver2c | ver3 >

This establishes the security model to use for messages passed to the targetaddress. If you use ver3 then msg-processing must also be ver3.

< msg-processing < ver1 | ver2c | ver3 > [noauth | auth | priv]

Establishes the msg-processing algorithm for messages passed to the target address. If ver3 is used and sec-model is ver3 then you must select a security services level (noauth, auth, or priv).

Figure 14-8. Example of SNMP Notification and Trap Configuration
SNMPv1 and SNMPv2c Trap Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server host (trap receiver)</td>
<td>public</td>
<td>—</td>
<td>page 14-20</td>
<td>—</td>
</tr>
<tr>
<td>snmp-server enable (authentication trap)</td>
<td>none</td>
<td>—</td>
<td>page 14-22</td>
<td>—</td>
</tr>
</tbody>
</table>

A *trap receiver* is a management station designated by the switch to receive SNMP traps sent from the switch. An *authentication trap* is a specialized SNMP trap sent to trap receivers when an unauthorized management station tries to access the switch.

**Note**

**Fixed or “Well-Known” Traps:** The switches covered in this guide automatically sends fixed traps (such as “coldStart”, “warmStart”, “linkDown”, and “linkUp”) to trap receivers using the *public* community name. These traps cannot be redirected to other communities. Thus, if you change or delete the default *public* community name, these traps will be lost.

**Thresholds:** The switch automatically sends all messages resulting from thresholds to the network management station(s) that set the thresholds, regardless of the trap receiver configuration.

In the default configuration, there are no trap receivers configured, and the authentication trap feature is disabled. From the CLI you can configure up to ten SNMP trap receivers to receive SNMP traps from the switch. As an option, you can also configure the switch to send Event Log messages as traps.

**CLI: Configuring and Displaying Trap Receivers**

<table>
<thead>
<tr>
<th>Trap Receiver Commands</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show snmp-server</td>
<td>14-20</td>
</tr>
<tr>
<td>snmp-server host</td>
<td>14-20</td>
</tr>
<tr>
<td>&lt;ip-addr&gt; &lt;community-name&gt;</td>
<td>14-20</td>
</tr>
<tr>
<td>[none</td>
<td>all</td>
</tr>
<tr>
<td>snmp-server enable traps authentication</td>
<td>14-20</td>
</tr>
</tbody>
</table>
Using the CLI To List Current SNMP Trap Receivers.

This command lists the currently configured trap receivers and the setting for authentication traps (along with the current SNMP community name data — refer to “SNMPv3 Communities” on page 14-11).

**Syntax:** show snmp-server

Displays current community and trap receiver data.

In the next example, the `show snmp-server` command shows that the switch has been previously configured to send SNMP traps to management stations belonging to the “public”, “red-team”, and “blue-team” communities.

![Figure 14-9. Example of Show SNMP-Server Listing](image)

**Configuring Trap Receivers.** This command specifies trap receivers by community membership, management station IP address, and the type of Event Log messages to send to the trap receiver.

**Note**

If you specify a community name that does not exist—that is, has not yet been configured on the switch—the switch still accepts the trap receiver assignment. However, no traps will be sent to that trap receiver until the community to which it belongs has been configured on the switch.
Syntax:  snmp-server host < community-string > < ip-address >

Using community name and destination IP address, this command designates a destination network-management station for receiving SNMP event log messages from the switch. If you do not specify the event level, then the switch does not send event log messages as traps. You can specify up to 10 trap receivers (network management stations).

Note: In all cases, the switch sends any threshold trap(s) to the network management station(s) that explicitly set the threshold(s).

[<none | all | non-info | critical | debug>]

Options for sending switch Event Log messages to a trap receiver. Refer to Table 14-1, “Options for Sending Event Log Messages as Traps,” on page 14-21. The levels specified with these options apply only to Event Log messages, and not to threshold traps.

<table>
<thead>
<tr>
<th>Event Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (default)</td>
<td>Send no log messages.</td>
</tr>
<tr>
<td>All</td>
<td>Send all log messages.</td>
</tr>
<tr>
<td>Not INFO</td>
<td>Send the log messages that are not information-only.</td>
</tr>
<tr>
<td>Critical</td>
<td>Send critical-level log messages.</td>
</tr>
<tr>
<td>Debug</td>
<td>Reserved for HP-internal use.</td>
</tr>
</tbody>
</table>

For example, to configure a trap receiver in a community named "red-team" with an IP address of 10.28.227.130 to receive only "critical" log messages:

ProCurve(config)# snmp-server trap-receiver red-team 10.28.227.130 critical
Notes
To replace one community name with another for the same IP address, you must use `no snmp-server host < community-name> < ip-address >` to delete the unwanted community name. Otherwise, adding a new community name with an IP address already in use with another community name simply creates two allowable community name entries for the same management station.

If you do not specify the event level (\[<none | all | non-info | critical | debug>\]) then the switch does not send event log messages as traps. "Well-Known" traps and threshold traps (if configured) will still be sent.

Using the CLI To Enable Authentication Traps

Note
For this feature to operate, one or more trap receivers must be configured on the switch. Refer to “Configuring Trap Receivers” on page 14-20.

Using the CLI To Enable Authentication Traps.

**Syntax:**  
[no] snmp-server enable traps authentication

Enables or disables sending an authentication trap to the configured trap receiver(s) if an unauthorized management station attempts to access the switch.

For example:

```
ProCurve(config)# snmp-server enable traps authentication
```

Check the Event Log in the console interface to help determine why the authentication trap was sent. (Refer to “Using the Event Log To Identify Problem Sources” on page C-26.)
Advanced Management: RMON

The switch supports RMON (Remote Monitoring) on all connected network segments. This allows for troubleshooting and optimizing your network.

The following RMON groups are supported:

■ Ethernet Statistics (except the numbers of packets of different frame sizes)
■ Alarm
■ History (of the supported Ethernet statistics)
■ Event

The RMON agent automatically runs in the switch. Use the RMON management station on your network to enable or disable specific RMON traps and events. Note that you can access the Ethernet statistics, Alarm, and Event groups from the ProCurve Manager network management software. For more on ProCurve Manager, visit the ProCurve Networking web site at

www.procurve.com

Click on products index, then look for the ProCurve Manager topic under the Network Manager bar.
LLDP (Link-Layer Discovery Protocol)

To standardize device discovery on all ProCurve switches, LLDP will be implemented while offering limited read-only support for CDP as documented in this manual. For the latest information on your switch model, consult the Release Notes (available on the ProCurve Networking web site). If LLDP has not yet been implemented (or if you are running an older version of software), consult a previous version of the Management and Configuration Guide for device discovery details.

**Table 14-2. LLDP and LLDP-MED Features**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the switch’s LLDP configuration</td>
<td>n/a</td>
<td>—</td>
<td>page 14-32</td>
<td>—</td>
</tr>
<tr>
<td>Enable or disable LLDP on the switch</td>
<td>Enabled</td>
<td>—</td>
<td>page 14-28</td>
<td>—</td>
</tr>
<tr>
<td>Change the transmit interval (refresh-interval) for LLDP packets</td>
<td>30 seconds</td>
<td>—</td>
<td>page 14-35</td>
<td>—</td>
</tr>
<tr>
<td>Change the holdtime multiplier for LLDP Packets (holdtime-multiplier x refresh-interval = time-to-live)</td>
<td>4 seconds</td>
<td>—</td>
<td>page 14-28</td>
<td>—</td>
</tr>
<tr>
<td>Change the delay interval between advertisements</td>
<td>2 seconds</td>
<td>—</td>
<td>page 14-36</td>
<td>—</td>
</tr>
<tr>
<td>Changing the reinitialization delay interval</td>
<td>2 seconds</td>
<td>—</td>
<td>page 14-37</td>
<td>—</td>
</tr>
<tr>
<td>Configuring SNMP notification support</td>
<td>Disabled</td>
<td>—</td>
<td>page 14-38</td>
<td>—</td>
</tr>
<tr>
<td>Configuring transmit and receive modes</td>
<td>tx_rx</td>
<td>—</td>
<td>page 14-39</td>
<td>—</td>
</tr>
<tr>
<td>Configuring basic LLDP per-port advertisement content</td>
<td>Enabled</td>
<td>—</td>
<td>page 14-40</td>
<td>—</td>
</tr>
<tr>
<td>Configuring port speed and duplex advertisements for optional LLDP and mandatory LLDP-MED applications</td>
<td>Enabled</td>
<td>—</td>
<td>page 14-61</td>
<td>—</td>
</tr>
<tr>
<td>Configuring topology change notification for LLDP-MED</td>
<td>Enable</td>
<td>—</td>
<td>page 14-46</td>
<td>—</td>
</tr>
<tr>
<td>Changing the fast-start duration for LLDP-MED</td>
<td>5 sec</td>
<td>—</td>
<td>page 14-48</td>
<td>—</td>
</tr>
<tr>
<td>Configuring LLDP-MED Advertising</td>
<td>Enabled</td>
<td>—</td>
<td>page 14-40</td>
<td>—</td>
</tr>
<tr>
<td>Configuring LLDP-MED device location data</td>
<td>None</td>
<td>—</td>
<td>page 14-59</td>
<td>—</td>
</tr>
<tr>
<td>Displaying Advertisement Data and Statistics</td>
<td>n/a</td>
<td>—</td>
<td>page 14-64</td>
<td>—</td>
</tr>
</tbody>
</table>

**LLDP (Link Layer Discovery Protocol):** provides a standards-based method for enabling the switches covered in this guide to advertise themselves to adjacent devices and to learn about adjacent LLDP devices.
LLDP-MED (LLDP Media Endpoint Discovery): Provides an extension to LLDP and is designed to support VoIP deployments.

**Note**

LLDP-MED is an extension for LLDP, and the switch requires that LLDP be enabled as a prerequisite to LLDP-MED operation.

An SNMP utility can progressively discover LLDP devices in a network by:

1. Reading a given device’s Neighbors table (in the Management Information Base, or MIB) to learn about other, neighboring LLDP devices.
2. Using the information learned in step 1 to find and read the neighbor devices’ Neighbors tables to learn about additional devices, and so on.

Also, by using `show` commands to access the switch’s neighbor database for information collected by an individual switch, system administrators can learn about other devices connected to the switch, including device type (capability) and some configuration information. In VoIP deployments using LLDP-MED on the switches covered in this guide, additional support unique to VoIP applications is also available. Refer to “LLDP-MED (Media-Endpoint-Discovery)” on page 14-43.

**Terminology**

**Adjacent Device**: Refer to “Neighbor or Neighbor Device”.

**Advertisement**: See LLDPDU.

**Active Port**: A port linked to another active device (regardless of whether MSTP is blocking the link).

**ELIN (Emergency Location Identification Number)**: A valid telephone number in the North American Numbering Plan format and assigned to a multiline telephone system operator by the appropriate authority. This number calls a public service answering point (PSAP) and relays automatic location identification data to the PSAP.

**LLDP**: Link Layer Discovery Protocol:
- Switches covered in this guide: IEEE 802.1AB

**LLDP-Aware**: A device that has LLDP in its operating code, regardless of whether LLDP is enabled or disabled.

**LLDP Device**: A switch, server, router, or other device running LLDP.
**LLDP Neighbor**: An LLDP device that is either directly connected to another LLDP device or connected to that device by another, non-LLDP Layer 2 device (such as a hub). Note that an 802.1D-compliant switch does not forward LLDP data packets even if it is not LLDP-aware.

**LLDPDU (LLDP Data Unit)**: LLDP data packet are transmitted on active links and include multiple TLVs containing global and per-port switch information. In this guide, LLDPDUs are termed “advertisements” or “packets”.

**LLDP-MED (Link Layer Discover Protocol Media Endpoint Discovery)**: The TIA telecommunications standard produced by engineering subcommittee TR41.4, “VoIP Systems — IP Telephony infrastructure and Endpoints” to address needs related to deploying VoIP equipment in IEEE 802.1D-based environments. This standard will be published as ANSI/TIA-1057.

**MIB (Management Information Base)**: An internal database the switch maintains for configuration and performance information.

**MLTS (Multiline Telephone System)**: A network-based and/or premises-based telephone system having a common interface with the public switched telephone system and having multiple telephone lines, common control units, multiple telephone sets, and control hardware and software.

**NANP (North American Numbering Plan)**: A ten-digit telephone number format where the first three digits are an area code and the last seven-digits are a local telephone number.

**Neighbor**: See “LLDP Neighbor”.

**Non-LLDP Device**: A device that is not capable of LLDP operation.

**PD (Powered Device)**: This is an IEEE 802.3af-compliant device that receives its power through a direct connection to a 10/100Base-TX PoE RJ-45 port in a ProCurve fixed-port or chassis-based switch. Examples of PDs include Voice-over-IP (VoIP) telephones, wireless access points, and remote video cameras.

**PSAP (Public Safety Answering Point)**: PSAPs are typically emergency telephone facilities established as a first point to receive emergency (911) calls and to dispatch emergency response services such as police, fire and emergency medical services.

**PSE (Power-Sourcing Equipment)**: A PSE, such as a PoE module installed in a switch covered in this guide, provides power to IEEE 802.3af-compliant PDs directly connected to the ports on the module.
**TLV (Type-Length-Value):** A data unit that includes a data type field, a data unit length field (in bytes), and a field containing the actual data the unit is designed to carry (as an alphanumeric string, a bitmap, or a subgroup of information). Some TLVs include subelements that occur as separate data points in displays of information maintained by the switch for LLDP advertisements. (That is, some TLVs include multiple data points or subelements.)

**General LLDP Operation**

An LLDP packet contains data about the transmitting switch and port. The switch advertises itself to adjacent (neighbor) devices by transmitting LLDP data packets out all ports on which outbound LLDP is enabled, and reading LLDP advertisements from neighbor devices on ports that are inbound LLDP-enabled. (LLDP is a one-way protocol and does not include any acknowledgement mechanism.) An LLDP-enabled port receiving LLDP packets inbound from neighbor devices stores the packet data in a Neighbor database (MIB).

**LLDP-MED**

This capability is an extension to LLDP and is available on the switches covered in this guide. Refer to “LLDP-MED (Media-Endpoint-Discovery)” on page 14-43.

**Packet Boundaries in a Network Topology**

- Where multiple LLDP devices are directly connected, an outbound LLDP packet travels only to the next LLDP device. An LLDP-capable device does not forward LLDP packets to any other devices, regardless of whether they are LLDP-enabled.
- An intervening hub or repeater forwards the LLDP packets it receives in the same manner as any other multicast packets it receives. Thus, two LLDP switches joined by a hub or repeater handle LLDP traffic in the same way that they would if directly connected.
- Any intervening 802.1D device or Layer-3 device that is either LLDP-unaware or has disabled LLDP operation drops the packet.
Configuration Options

Enable or Disable LLDP on the Switch. In the default configuration, LLDP is globally enabled on the switch. To prevent transmission or receipt of LLDP traffic, you can disable LLDP operation (page 14-28)

Enable or Disable LLDP-MED. In the default configuration for the switches covered in this guide, LLDP-MED is enabled by default. (Requires that LLDP is also enabled.) For more information, refer to “LLDP-MED (Media-Endpoint-Discovery)” on page 14-43.

Change the Frequency of LLDP Packet Transmission to Neighbor Devices. On a global basis, you can increase or decrease the frequency of outbound LLDP advertisements (page 14-28).

Change the Time-To-Live for LLDP Packets Sent to Neighbors. On a global basis, you can increase or decrease the time that the information in an LLDP packet outbound from the switch will be maintained in a neighbor LLDP device (page 14-28).

Transmit and Receive Mode. With LLDP enabled, the switch periodically transmits an LLDP advertisement (packet) out each active port enabled for outbound LLDP transmissions, and receives LLDP advertisements on each active port enabled to receive LLDP traffic (page 14-39). Per-Port configuration options include four modes:

■ Transmit and Receive (tx_rx): This is the default setting on all ports. It enables a given port to both transmit and receive LLDP packets, and to store the data from received (inbound) LLDP packets in the switch's MIB.

■ Transmit only (txonly): This setting enables a port to transmit LLDP packets that can be read by LLDP neighbors. However, the port drops inbound LLDP packets from LLDP neighbors without reading them. This prevents the switch from learning about LLDP neighbors on that port.

■ Receive only (rxonly): This setting enables a port to receive and read LLDP packets from LLDP neighbors, and to store the packet data in the switch’s MIB. However, the port does not transmit outbound LLDP packets. This prevents LLDP neighbors from learning about the switch through that port.

■ Disable (disable): This setting disables LLDP packet transmissions and reception on a port. In this state, the switch does not use the port for either learning about LLDP neighbors or informing LLDP neighbors of its presence.
SNMP Notification. You can enable the switch to send a notification to any configured SNMP trap receiver(s) when the switch detects a remote LLDP data change on an LLDP-enabled port (page 14-38).

Per-Port (Outbound) Data Options. The following table lists the information the switch can include in the per-port, outbound LLDP packets it generates. In the default configuration, all outbound LLDP packets include this information in the TLVs transmitted to neighbor devices. However, you can configure LLDP advertisements on a per-port basis to omit some of this information (page 14-40).

Table 14-3. Data Available for Basic LLDP Advertisements

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Configuration Options</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-to-Live</td>
<td>See note 1.</td>
<td>120 Seconds</td>
<td>The length of time an LLDP neighbor retains the advertised data before discarding it.</td>
</tr>
<tr>
<td>Chassis Type</td>
<td>N/A</td>
<td>Always Enabled</td>
<td>Indicates the type of identifier used for Chassis ID.</td>
</tr>
<tr>
<td>Chassis ID</td>
<td>N/A</td>
<td>Always Enabled</td>
<td>Uses base MAC address of the switch.</td>
</tr>
<tr>
<td>Port Type</td>
<td>N/A</td>
<td>Always Enabled</td>
<td>Uses “Local”, meaning assigned locally by LLDP.</td>
</tr>
<tr>
<td>Port Id</td>
<td>N/A</td>
<td>Always Enabled</td>
<td>Uses port number of the physical port. In the switches covered in this guide, this is an internal number reflecting the reserved slot/port position in the chassis. For more information on this numbering scheme, refer to figures D-2 and D-3 in Appendix D, “MAC Address Management” of the Management and Configuration Guide for your switch.</td>
</tr>
<tr>
<td>Remote Management Address</td>
<td></td>
<td></td>
<td>Show the network address type.</td>
</tr>
<tr>
<td>Address Type</td>
<td>N/A</td>
<td>Always Enabled</td>
<td>Shows the network address type.</td>
</tr>
<tr>
<td>Address Type</td>
<td>N/A</td>
<td>Default or Configured</td>
<td>Uses a default address selection method unless an optional address is configured. See “Remote Management Address”, below.</td>
</tr>
<tr>
<td>System Name</td>
<td>Enable/Disable</td>
<td>Enabled</td>
<td>Uses the switch’s assigned name.</td>
</tr>
<tr>
<td>System Description</td>
<td>Enable/Disable</td>
<td>Enabled</td>
<td>Includes switch model name and running software version, and ROM version.</td>
</tr>
<tr>
<td>Port Description</td>
<td>Enable/Disable</td>
<td>Enabled</td>
<td>Uses the physical port identifier.</td>
</tr>
<tr>
<td>System capabilities supported</td>
<td>Enable/Disable</td>
<td>Enabled</td>
<td>Identifies the switch’s primary capabilities (bridge, router).</td>
</tr>
<tr>
<td>System capabilities enabled</td>
<td>Enable/Disable</td>
<td>Enabled</td>
<td>Identifies the primary switch functions that are enabled, such as routing.</td>
</tr>
</tbody>
</table>
Remote Management Address. The switch always includes an IP address in its LLDP advertisements. This can be either an address selected by a default process, or an address configured for inclusion in advertisements. Refer to “IP Address Advertisements” on page 14-31.

Debug Logging. You can enable LLDP debug logging to a configured debug destination (Syslog server and/or a terminal device) by executing the `debug lldp` command. (For more on Debug and Syslog, refer to the “Troubleshooting” appendix in this guide.) Note that the switch’s Event Log does not record usual LLDP update messages.

Options for Reading LLDP Information Collected by the Switch

You can extract LLDP information from the switch to identify adjacent LLDP devices. Options include:

- Using the switch’s `show lldp info` command options to display data collected on adjacent LLDP devices—as well as the local data the switch is transmitting to adjacent LLDP devices (page 14-32).

- Using an SNMP application that is designed to query the Neighbors MIB for LLDP data to use in device discovery and topology mapping. 3400/6400 only?

- Using the `walkmib` command to display a listing of the LLDP MIB objects

LLDP and LLDP-MED Standards Compatibility

The operation covered by this section is compatible with these standards:

- IEEE P802.1AB
- RFC 2922 (PTOPO, or Physical Topology MIB)
- RFC 2737 (Entity MIB)
- RFC 2863 (Interfaces MIB)
- ANSI/TIA-1057/D6 (LLDP-MED; refer to “LLDP-MED (Media-Endpoint-
  Discovery)” on page 14-43.)

LLDP Operating Rules

(For additional information specific to LLDP-MED operation, refer to “LLDP-
  MED (Media-Endpoint-Discovery)” on page 14-43.)

Port Trunking. LLDP manages trunked ports individually. That is, trunked
ports are configured individually for LLDP operation, in the same manner as
non-trunked ports. Also, LLDP sends separate advertisements on each port in
a trunk, and not on a per-trunk basis. Similarly, LLDP data received through
trunked ports is stored individually, per-port.

IP Address Advertisements. In the default operation, if a port belongs to
only one static VLAN, then the port advertises the lowest-order IP address
configured on that VLAN. If a port belongs to multiple VLANs, then the port
adVERTISES the lowest-order IP address configured on the VLAN with the
lowest VID. If the qualifying VLAN does not have an IP address, the port
adVERTISES 127.0.0.1 as its IP address. For example, if the port is a member of
the default VLAN (VID = 1), and there is an IP address configured for the
default VLAN, then the port advertises this IP address. In the default operation,
the IP address that LLDP uses can be an address acquired by DHCP or Bootp.

You can override the default operation by configuring the port to advertise
any IP address that is manually configured on the switch, even if the port does
not belong to the VLAN configured with the selected IP address (page 14-40).
(Note that LLDP cannot be configured through the CLI to advertise an
addresses acquired through DHCP or Bootp. However, as mentioned above,
in the default LLDP configuration, if the lowest-order IP address on the VLAN
with the lowest VID for a given port is a DHCP or Bootp address, then the
switch includes this address in its LLDP advertisements unless another
address is configured for advertisements on that port.) Also, although LLDP
allows configuring multiple remote management addresses on a port, only the
lowest-order address configured on the port will be included in outbound
advertisements. Attempting to use the CLI to configure LLDP with an IP
address that is either not configured on a VLAN, or has been acquired by DHCP
or Bootp results in the following error message.

xxx.xxx.xxx.xxx: This IP address is not configured or is
  a DHCP address.
Spanning-Tree Blocking. Spanning tree does not prevent LLDP packet transmission or receipt on STP-blocked links.

802.1X Blocking. Ports blocked by 802.1X operation do not allow transmission or receipt of LLDP packets.

Configuring LLDP Operation

In the default configuration, LLDP is enabled and in both transmit and receive mode on all active ports. The LLDP configuration includes global settings that apply to all active ports on the switch, and per-port settings that affect only the operation of the specified ports.

The commands in this section affect both LLDP and LLDP-MED operation. for information on operation and configuration unique to LLDP-MED, refer to “LLDP-MED (Media-Endpoint-Discovery)” on page 14-43.

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show lldp config</td>
<td>14-34</td>
</tr>
<tr>
<td>[no] lldp run</td>
<td>14-34</td>
</tr>
<tr>
<td>lldp refresh-interval</td>
<td>14-35</td>
</tr>
<tr>
<td>lldp holdtime-multiplier</td>
<td>14-36</td>
</tr>
<tr>
<td>lldp TxDelay</td>
<td>14-36</td>
</tr>
<tr>
<td>lldp ReinitDelay</td>
<td>14-37</td>
</tr>
<tr>
<td>lldp enable-notification</td>
<td>14-38</td>
</tr>
<tr>
<td>lldp notificationinterval</td>
<td>14-39</td>
</tr>
<tr>
<td>lldp admin-status &lt; txonly</td>
<td>rxonly</td>
</tr>
<tr>
<td>lldp config &lt; port-list &gt; IpAddrEnable</td>
<td>14-40</td>
</tr>
<tr>
<td>lldp config &lt; port-list &gt; basicTlvEnable</td>
<td>14-41</td>
</tr>
<tr>
<td>lldp config &lt; port-list &gt; dot3TlvEnable</td>
<td>14-43</td>
</tr>
<tr>
<td>lldp config &lt; port-list &gt; macphy_config</td>
<td>14-43</td>
</tr>
</tbody>
</table>

Viewing the Current Configuration

Displaying the Global LLDP, Port Admin, and SNMP Notification Status. This command displays the switch’s general LLDP configuration status, including some per-port information affecting advertisement traffic and trap notifications.

Syntax  show lldp config
Displays the LLDP global configuration, LLDP port status, and SNMP notification status. For information on port admin status, refer to “Configuring Per-Port Transmit and Receive Modes” on page 14-39.

For example, `show lldp config` produces the following display when the switch is in the default LLDP configuration:

```
ProCurve(config)# show lldp config

LLDP Global Configuration

LLDP Enabled [Yes] : Yes
LLDP Transmit Interval [30] : 30
LLDP Hold time Multiplier [4] : 4
LLDP Delay Interval [2] : 2
LLDP Reinit Interval [2] : 2

LLDP Port Configuration

<table>
<thead>
<tr>
<th>Port</th>
<th>AdminStatus</th>
<th>NotificationEnabled</th>
<th>Med Topology Trap Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tx_Rx</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td>Tx_Rx</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>3</td>
<td>Tx_Rx</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>4</td>
<td>Tx_Rx</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>Tx_Rx</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>6</td>
<td>Tx_Rx</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>Tx_Rx</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>8</td>
<td>Tx_Rx</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Figure 14-10. Example of Viewing the General LLDP Configuration
```
Displaying Port Configuration Details. This command displays the port-specific configuration, including.

**Syntax**  `show lldp config <port-list>`

Displays the LLDP port-specific configuration for all ports in `<port-list>`, including which optional TLVs and any non-default IP address that are included in the port’s outbound advertisements. For information on the notification setting, refer to “Configuring SNMP Notification Support” on page 14-38. For information on the other configurable settings displayed by this command, refer to “Configuring Per-Port Transmit and Receive Modes” on page 14-39.

![ProCurve(config)# show lldp config a1](image)

Figure 14-11. Example of Per-Port Configuration Display

Configuring Global LLDP Packet Controls

The commands in this section configure the aspects of LLDP operation that apply the same to all ports in the switch.

**Enabling or Disabling LLDP Operation on the Switch.** Enabling LLDP operation (the default) causes the switch to:

- Use active, LLDP-enabled ports to transmit LLDP packets describing itself to neighbor devices.
Add entries to its neighbors table based on data read from incoming LLDP advertisements.

**Syntax**  
[ no ] lldp run

Enables or disables LLDP operation on the switch. The no form of the command, regardless of individual LLDP port configurations, prevents the switch from transmitting outbound LLDP advertisements, and causes the switch to drop all LLDP advertisements received from other devices. The switch preserves the current LLDP configuration when LLDP is disabled. After LLDP is disabled, the information in the LLDP neighbors database remains until it times-out. (Default: Enabled)

For example, to disable LLDP on the switch:

ProCurve(config)# no lldp run

**Changing the Packet Transmission Interval.** This interval controls how often active ports retransmit advertisements to their neighbors.

**Syntax**  
lldp refresh-interval < 5 - 32768 >

Changes the interval between consecutive transmissions of LLDP advertisements on any given port. (Default: 30 seconds)

**Note:** The refresh-interval must be greater than or equal to (4 x delay-interval). (The default delay-interval is 2). For example, with the default delay-interval, the lowest refresh-interval you can use is 8 seconds (4 x 2 = 8). Thus, if you want a refresh-interval of 5 seconds, you must first change the delay interval to 1 (that is, 4 x 1 < 5). If you want to change the delay-interval, use the setmib command.
Changing the Time-to-Live for Transmitted Advertisements. The Time-to-Live value (in seconds) for all LLDP advertisements transmitted from a switch is controlled by the switch that generates the advertisement, and determines how long an LLDP neighbor retains the advertised data before discarding it. The Time-to-Live value is the result of multiplying the refresh-interval by the holdtime-multiplier described below.

**Syntax**  
```lldp holdtime-multiplier < 2 - 10 >```

Changes the multiplier an LLDP switch uses to calculate the Time-to-Live for the LLDP advertisements it generates and transmits to LLDP neighbors. When the Time-to-Live for a given advertisement expires the advertised data is deleted from the neighbor switch’s MIB. (Default: 4; Range: 2 - 10)

For example, if the refresh-interval on the switch is 15 seconds and the holdtime-multiplier is at the default, the Time-to-Live for advertisements transmitted from the switch is 60 seconds (4 x 15). To reduce the Time-to-Live, you could lower the holdtime-interval to 2, which would result in a Time-to-Live of 30 seconds.

ProCurve(config)# lldp holdtime-multiplier 2

Changing the Delay Interval Between Advertisements Generated by Value or Status Changes to the LLDP MIB. The switch uses a delay-interval setting to delay transmitting successive advertisements resulting from these LLDP MIB changes. If a switch is subject to frequent changes to its LLDP MIB, lengthening this interval can reduce the frequency of successive advertisements. The delay-interval can be changed using either an SNMP network management application or the CLI `setmib` command.
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

**Syntax**

```
setmib lldpTxDelay.0 -i < 1 - 8192 >
```

Uses `setmib` to change the minimum time (delay-interval) any LLDP port will delay advertising successive LLDP advertisements due to a change in LLDP MIB content. (Default: 2; Range: 1 - 8192)

**Note:** The LLDP refresh-interval (transmit interval) must be greater than or equal to \((4 \times \text{delay-interval})\). The switch does not allow increasing the delay interval to a value that conflicts with this relationship. That is, the switch displays **Inconsistent value** if \((4 \times \text{delay-interval})\) exceeds the current transmit interval, and the command fails. Depending on the current refresh-interval setting, it may be necessary to increase the refresh-interval before using this command to increase the delay-interval.

For example, to change the delay-interval from 2 seconds to 8 seconds when the refresh-interval is at the default 30 seconds, you must first set the refresh-interval to a minimum of 32 seconds \((32 = 4 \times 8)\).

![Example of Changing the Transmit-Delay Interval](image)

**Figure 14-12. Example of Changing the Transmit-Delay Interval**

**Changing the Reinitialization Delay Interval.** In the default configuration, a port receiving a `disable` command followed immediately by a `txonly`, `rxonly`, or `tx_rx` command delays reinitializing for two seconds, during which time LLDP operation remains disabled. If an active port is subjected to frequent toggling between the LLDP disabled and enabled states, LLDP advertisements are more frequently transmitted to the neighbor device. Also, the neighbor table in the adjacent device will change more frequently, as it deletes, then replaces LLDP data for the affected port which, in turn, generates SNMP traps (if trap receivers and SNMP notification are configured). All of this can unnecessarily increase network traffic. Extending the reinitialization-
delay interval delays the port’s ability to reinitialize and generate LLDP traffic following an LLDP disable/enable cycle.

**Syntax**  setmib lldpReinitDelay.0 -i < 1 - 10 >

Uses **setmib** to change the minimum time (reinitialization delay interval) an LLDP port will wait before reinitializing after receiving an LLDP disable command followed closely by a txonly or tx_rx command. The delay interval commences with execution of the **lldp admin-status < port-list> disable** command. (Default: 2 seconds; Range: 1 - 10 seconds)

For example, the following command changes the reinitialization delay interval to five seconds:

ProCurve(config)# setmib lldpreinitdelay.0 -i 5

**Configuring SNMP Notification Support**

You can enable SNMP trap notification of LLDP data changes detected on advertisements received from neighbor devices, and control the interval between successive notifications of data changes on the same neighbor.

**Enabling LLDP Data Change Notification for SNMP Trap Receivers.**

**Syntax**  [ no ] lldp enable-notification < port-list>

Enables or disables each port in < port-list > for sending notification to configured SNMP trap receiver(s) if an LLDP data change is detected in an advertisement received on the port from an LLDP neighbor. (Default: Disabled)

For information on configuring trap receivers in the switch, refer to “SNMPv3 Notification and Traps” on page 14-16.

For example, this command enables SNMP notification on ports 1 - 5:

ProCurve(config)# lldp enable-notification 1-5
Changing the Minimum Interval for Successive Data Change Notifications for the Same Neighbor.

If LLDP trap notification is enabled on a port, a rapid succession of changes in LLDP information received in advertisements from one or more neighbors can generate a high number of traps. To reduce this effect, you can globally change the interval between successive notifications of neighbor data change.

Syntax  `setmib lldpnotificationinterval.0 -i 1 - 3600`

Globally changes the interval between successive traps generated by the switch. If multiple traps are generated in the specified interval, only the first trap will be sent. The remaining traps will be suppressed. (A network management application can periodically check the switch MIB to detect any missed change notification traps. Refer to IEEE P802.1AB or later for more information.) (Default: 5 seconds)

For example, the following command limits change notification traps from a particular switch to one per minute.

```
ProCurve(config)# setmib lldpnotificationinterval.0 -i 60
lldpNotificationInterval.0 = 60
```

Configuring Per-Port Transmit and Receive Modes

These commands control advertisement traffic inbound and outbound on active ports.

Syntax  `lldp admin-status < port-list> < txonly | rxonly | tx_rx | disable >`

With LLDP enabled on the switch in the default configuration, each port is configured to transmit and receive LLDP packets. These options enable you to control which ports participate in LLDP traffic and whether the participating ports allow LLDP traffic in only one direction or in both directions.

**txonly**: Configures the specified port(s) to transmit LLDP packets, but block inbound LLDP packets from neighbor devices.

**rxonly**: Configures the specified port(s) to receive LLDP packets from neighbors, but block outbound packets to neighbors.

**tx_rx**: Configures the specified port(s) to both transmit and receive LLDP packets. (This is the default setting.)

**disable**: Disables LLDP packet transmit and receive on the specified port(s).
Configuring Basic LLDP Per-Port Advertisement Content

In the default LLDP configuration, outbound advertisements from each port on the switch include both mandatory and optional data.

**Mandatory Data.** An active LLDP port on the switch always includes the mandatory data in its outbound advertisements. LLDP collects the mandatory data, and, except for the Remote Management Address, you cannot use LLDP commands to configure the actual data.

- Chassis Type (TLV subelement)
- Chassis ID (TLV)
- Port Type (TLV subelement)
- Port ID (TLV)
- Remote Management Address (TLV; actual IP address is a subelement that can be a default address or a configured address)

**Configuring a Remote Management Address for Outbound LLDP Advertisements.** This is an optional command you can use to include a specific IP address in the outbound LLDP advertisements for specific ports.

**Syntax**

```
[ no ] lldp config < port-list > ipAddrEnable < ip-address >
```

Replaces the default IP address for the port with an IP address you specify. This can be any IP address configured in a static VLAN on the switch, even if the port does not belong to the VLAN configured with the selected IP address. The no form of the command deletes the specified IP address. If there are no IP addresses configured as management addresses, then the IP address selection method returns to the default operation. (Default: The port advertises the IP address of the lowest-numbered VLAN (VID) to which it belongs. If there is no IP address configured on the VLAN(s) to which the port belongs, and the port is not configured to advertise an IP address from any other (static) VLAN on the switch, then the port advertises an address of 127.0.0.1.)

**Note:** This command does not accept either IP addresses acquired through DHCP or Bootp, or IP addresses that are not configured in a static VLAN on the switch.
For example, if port 3 belongs to a subnetted VLAN that includes an IP address of 10.10.10.100 and you wanted port 3 to use this secondary address in LLDP advertisements, you would need to execute the following command:

```
ProCurve(config)# lldp config 3 ipAddrEnable 10.10.10.100
```

**Optional Data.** You can configure an individual port or group of ports to exclude one or more of these data types from outbound LLDP advertisements. Note that optional data types, when enabled, are populated with data internal to the switch; that is, you cannot use LLDP commands to configure their actual content.

- port description (TLV)
- system name (TLV)
- system description (TLV)
- system capabilities (TLV)
  - system capabilities Supported (TLV subelement)
  - system capabilities Enabled (TLV subelement)
- port speed and duplex (TLV subelement)

**Syntax:** `[ no ] lldp config < port-list > basicTlvEnable < TLV-Type >

<table>
<thead>
<tr>
<th>Port Descrip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port_descr</td>
<td>For outbound LLDP advertisements, this TLV includes an alphanumeric string describing the port. (Default: Enabled)</td>
</tr>
<tr>
<td>system_name</td>
<td>For outbound LLDP advertisements, this TLV includes an alphanumeric string showing the system's assigned name. (Default: Enabled)</td>
</tr>
<tr>
<td>system_descr</td>
<td>For outbound LLDP advertisements, this TLV includes an alphanumeric string describing the full name and version identification for the system's hardware type, software version, and networking application. (Default: Enabled)</td>
</tr>
</tbody>
</table>
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

system_cap

For outbound advertisements, this TLV includes a bitmask of supported system capabilities (device functions). Also includes information on whether the capabilities are enabled. (Default: Enabled)

For example, if you wanted to exclude the system name TLV from the outbound LLDP advertisements for all ports on a switch, you would use this command:

ProCurve(config)# no lldp config 1-24 basicTlvEnable system_name

If you later decided to reinstate the system name TLV on ports 1-5, you would use this command:

ProCurve(config)# lldp config 1-5 basicTlvEnable system_name

Configuring Support for Port Speed and Duplex Advertisements

This feature is optional for LLDP operation, but is required for LLDP-MED operation.

Port speed and duplex advertisements are supported on the switches covered in this guide to inform an LLDP endpoint and the switch port of each other’s port speed and duplex configuration and capabilities. Configuration mismatches between a switch port and an LLDP endpoint can result in excessive collisions and voice quality degradation. LLDP enables discovery of such mismatches by supporting SNMP access to the switch MIB for comparing the current switch port and endpoint settings. (Changing a current device configuration to eliminate a mismatch requires intervention by the system operator.)
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

Syntax:  [ no ] lldp config < port-list > dot3TlvEnable macphy_config

For outbound advertisements, this TLV includes the (local) switch port’s current speed and duplex settings, the range of speed and duplex settings the port supports, and the method required for reconfiguring the speed and duplex settings on the device (auto-negotiation during link initialization, or manual configuration).

Using SNMP to compare local and remote information can help in locating configuration mismatches.
(Default: Enabled)

Note: For LLDP operation, this TLV is optional. For LLDP-MED operation, this TLV is mandatory.

As mentioned above, an SNMP network management application can be used to compare the port speed and duplex data configured in the switch and advertised by the LLDP endpoint. You can also use the CLI to display this information. For more on using the CLI to display port speed and duplex information, refer to “Displaying the Current Port Speed and Duplex Configuration on a Switch Port” on page 14-60.

LLDP-MED (Media-Endpoint-Discovery)

LLDP-MED (ANSI/TIA-1057/D6) extends the LLDP (IEEE 802.1AB) industry standard to support advanced features on the network edge for Voice Over IP (VoIP) endpoint devices with specialized capabilities and LLDP-MED standards-based functionality. LLDP-MED in the switches uses the standard LLDP commands described earlier in this section, with some extensions, and also introduces new commands unique to LLDP-MED operation. The show commands described elsewhere in this section are applicable to both LLDP and LLDP-MED operation. LLDP-MED benefits include:

- plug-and-play provisioning for MED-capable, VoIP endpoint devices
- simplified, vendor-independent management enabling different IP telephony systems to interoperate on one network
- automatic deployment of convergence network policies (voice VLANs, Layer 2/CoS priority, and Layer 3/QoS priority)
- configurable endpoint location data to support the Emergency Call Service (ECS) (such as Enhanced 911 service, 999, 112)
- detailed VoIP endpoint data inventory readable via SNMP from the switch
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

- Power over Ethernet (PoE) status and troubleshooting support via SNMP
- Support for IP telephony network troubleshooting of call quality issues via SNMP

This section describes how to configure and use LLDP-MED features in the switches to support VoIP network edge devices (Media Endpoint Devices) such as:

- IP phones
- Voice/media gateways
- Media servers
- IP communications controllers
- Other VoIP devices or servers

**Figure 14-13. Example of LLDP-MED Network Elements**

**LLDP-MED Endpoint Support.** LLDP-MED on the switches covered in this guide interoperates with directly connected IP telephony (endpoint) clients having these features and services:

- Able to autonegotiate speed and duplex configuration with the switch
able to use the following network policy elements configured on the client port

- voice VLAN ID
- 802.1p (Layer 2) QoS
- Diffserv codepoint (DSCP) (Layer 3) QoS

- discover and advertise device location data learned from the switch
- support emergency call service (ECS—such as E911, 999, and 112)
- advertise device information for the device data inventory collected by the switch, including:
  - hardware revision
  - firmware revision
  - software revision
  - serial number
  - manufacturer name
  - model name
  - asset ID

- provide information on network connectivity capabilities (for example, a multi-port VoIP phone with Layer 2 switch capability)
- support the fast start capability

**Note**

LLDP-MED on the switches covered in this guide is intended for use with VoIP endpoints, and is not designed to support links between network infrastructure devices, such as switch-to-switch or switch-to-router links.

**LLDP-MED Endpoint Device Classes.** LLDP-MED endpoint devices are, by definition, located at the network edge and communicate using the LLDP-MED framework. Any LLDP-MED endpoint device belongs to one of the following three classes:

- **Class 1 (Generic Endpoint Devices):** These devices offer the basic LLDP discovery services, network policy advertisement (VLAN ID, Layer 2/802.1p priority, and Layer 3/DSCP priority), and PoE management. This class includes such devices as IP call controllers and communication-related servers.

- **Class 2 (Media Endpoint Devices):** These devices offer all Class 1 features plus media streaming capability, and include such devices as voice/media gateways, conference bridges, and media servers.
- Class 3 (Communication Devices): These devices are typically IP phones or end-user devices that otherwise support IP media and offer all Class 1 and Class 2 features, plus location identification and emergency 911 capability, Layer 2 switch support, and device information management.

**LLDP-MED Operational Support.** The switches covered in this guide offer two configurable TLVs supporting MED-specific capabilities:
- medTlvEnable (for per-port enabling or disabling of LLDP-MED operation)
- medPortLocation (for configuring per-port location or emergency call data)

---

**Note**

LLDP-MED operation also requires the port speed and duplex TLV (dot3TlvEnable; page 14-43), which is enabled in the default configuration.

**LLDP-MED Topology Change Notification**

This optional feature provides information an SNMP application can use to track LLDP-MED connects and disconnects.
**Syntax:**  lldp top-change-notify < port-list >

Topology change notification, when enabled on an LLDP port, causes the switch to send an SNMP trap if it detects LLDP-MED endpoint connection or disconnection activity on the port, or an age-out of the LLDP-MED neighbor on the port. The trap includes the following information:

- **the port number (internal) on which the activity was detected** (For more in internal port numbers, refer to “Determining the Switch Port Number Included in Topology Change Notification Traps” on page 14-67.)
- **the LLDP-MED class of the device detected on the port** (“LLDP-MED Endpoint Device Classes” on page 14-45.)

The **show running** command shows whether the topology change notification feature is enabled or disabled. For example, if ports A1-A10 have topology change notification enabled, the following entry appears in the **show running** output:

```
lldp top-change-notify A1-A10
```

*(Default: Disabled)*

**Note:** To send traps, this feature requires access to at least one SNMP server. For information on configuring traps, refer to “SNMPv3 Notification and Traps” on page 14-16.

Also, if a detected LLDP-MED neighbor begins sending advertisements without LLDP-MED TLVs, the switch sends a top-change-notify trap.

---

**Note**

Topology change notifications provide one method for monitoring system activity. However, because SNMP normally employs UDP, which does not guarantee datagram delivery, topology change notification should not be relied upon as the sole method for monitoring critical endpoint device connectivity.
LLDP-MED Fast Start Control

**Syntax:**  `lldp fast-start-count < 1 - 10 >`

An LLDP-MED device connecting to a switch port may use the data contained in the MED TLVs from the switch to configure itself. However, the `lldp refresh-interval` setting (default: 30 seconds) for transmitting advertisements can cause an unacceptable delay in MED device configuration. To support rapid LLDP-MED device configuration, the `lldp fast-start-count` command temporarily overrides the `refresh-interval` setting for the `fast-start-count` advertisement interval. This results in the port initially advertising LLDP-MED at a faster rate for a limited time. Thus, when the switch detects a new LLDP-MED device on a port, it transmits one LLDP-MED advertisement per second out the port for the duration of the `fast-start-count` interval. In most cases, the default setting should provide an adequate `fast-start-count` interval.

*(Range: 1 - 10 seconds; Default: 5 seconds)*

**Note:** This global command applies only to ports on which a new LLDP-MED device is detected. It does not override the refresh-interval setting on ports where non-MED devices are detected.

Advertising Device Capability, Network Policy, PoE Status and Location Data

The `medTlvEnable` option on the switch is enabled in the default configuration and supports the following LLDP-MED TLVs:

- **LLDP-MED capabilities:** This TLV enables the switch to determine:
  - whether a connected endpoint device supports LLDP-MED
  - which specific LLDP-MED TLVs the endpoint supports
  - the device class (1, 2, or 3) for the connected endpoint

  This TLV also enables an LLDP-MED endpoint to discover what LLDP-MED TLVs the switch port currently supports.

- **network policy operating on the port to which the endpoint is connected** (VLAN, Layer 2 QoS, Layer 3 QoS)

- **PoE (MED Power-over-Ethernet)**

- **physical location data — page 14-53**
LLDP-MED operation requires the macphy_config TLV subelement—enabled by default—that is optional for IEEE 802.1AB LLDP operation. Refer to the `dot3TlvEnable macphy_config` command on page 14-43.

**Network Policy Advertisements.** Network policy advertisements are intended for real-time voice and video applications, and include these TLV subelements:

- Layer 2 (802.1p) QoS
- Layer 3 DSCP (diffserv code point) QoS
- Voice VLAN ID (VID)

**VLAN Operating Rules.** These rules affect advertisements of VLANs in network policy TLVs:

- The VLAN ID TLV subelement applies only to a VLAN configured for voice operation (`vlan < vid > voice`).
- If there are multiple voice VLANs configured on a port, LLDP-MED advertises the voice VLAN having the lowest VID.
- The voice VLAN port membership configured on the switch can be tagged or untagged. However, if the LLDP-MED endpoint expects a tagged membership when the switch port is configured for untagged, or the reverse, then a configuration mismatch results. (Typically, the endpoint expects the switch port to have a tagged voice VLAN membership.)
- If a given port does not belong to a voice VLAN, then the switch does not advertise the VLAN ID TLV through this port.

**Policy Elements.** These policy elements may be statically configured on the switch or dynamically imposed during an authenticated session on the switch using a RADIUS server and 802.1X or MAC authentication. (Web authentication does not apply to VoIP telephones and other telecommunications devices that are not capable of accessing the switch through a Web browser.) The QoS and voice VLAN policy elements can be statically configured with the following CLI commands:

```
vlan < vid > voice
vlan < vid > < tagged | untagged > < port-list >
int < port-list > qos priority < 0 - 7 >
vlan < vid > qos dscp < codepoint >
```
Notes

A codepoint must have an 802.1p priority before you can configure it for use in prioritizing packets by VLAN-ID. If a codepoint you want to use shows No Override in the Priority column of the DSCP policy table (display with `show qos-dscp map`, then use `qos-dscp map < codepoint > priority < 0 - 7 >` to configure a priority before proceeding. For more on this topic, refer to the chapter titled “Quality of Service (QoS): Managing Bandwidth More Effectively” in the Advanced Traffic Management Guide for your switch.

Enabling or Disabling medTlvEnable. In the default LLDP-MED configuration, the TLVs controlled by medTlvEnable are enabled.
Syntax:  [ no ] lldp config < port-list > medTlvEnable < medTlv >

- Enables or disables advertisement of the following TLVs on the specified ports:
  - device capability TLV
  - configured network policy TLV
  - configured location data TLV (Refer to “Configuring Location Data for LLDP-MED Devices” on page 14-53.)
  - current PoE status TLV

( Default: All of the above TLVs are enabled. )

- Helps to locate configuration mismatches by allowing use of an SNMP application to compare the LLDP-MED configuration on a port with the LLDP-MED TLVs advertised by a neighbor connected to that port.

capabilities

This TLV enables the switch to determine:
  - which LLDP-MED TLVs a connected endpoint can discover
  - the device class (1, 2, or 3) for the connected endpoint

This TLV also enables an LLDP-MED endpoint to discover what LLDP-MED TLVs the switch port currently supports.

( Default: enabled )

Note: This TLV cannot be disabled unless the network_policy, poe, and location_id TLVs are already disabled.
network-policy

This TLV enables the switch port to advertise its configured network policies (voice VLAN, Layer 2 QoS, Layer 3 QoS), and allows LLDP-MED endpoint devices to auto-configure the voice network policy advertised by the switch. This also enables the use of SNMP applications to troubleshoot statically configured endpoint network policy mismatches.

(Default: Enabled)

Notes: Network policy is only advertised for ports that are configured as members of the voice VLAN. If the port belongs to more than one voice VLAN, then the voice VLAN with the lowest-numbered VID is selected as the VLAN for voice traffic. Also, this TLV cannot be enabled unless the capability TLV is already enabled.

For more information, refer to “Network Policy Advertisements” on page 14-49

location_id

This TLV enables the switch port to advertise its configured location data (if any). For more on configuring location data, refer to “Configuring Location Data for LLDP-MED Devices”.

(Default: Enabled)

Note: When disabled, this TLV cannot be enabled unless the capability TLV is already enabled.

poe

This TLV enables the switch port to advertise its current PoE (Power over Ethernet) state and to read the PoE requirements advertised by the LLDP-MED endpoint device connected to the port.

(Default: Enabled)

Note: When disabled, this TLV cannot be enabled unless the capability TLV is already enabled.

For more on this topic, refer to “PoE Advertisements”, below.
**PoE Advertisements.** These advertisements inform an LLDP-MED endpoint of the power (PoE) configuration on switch ports. Similar advertisements from an LLDP-MED endpoint inform the switch of the endpoint's power needs and provide information that can be used to identify power priority mismatches.

Power-over-Ethernet TLVs include the following power data:

- **power type:** indicates whether the device is a power-sourcing entity (PSE) or a powered device (PD). Ports on the J8702A PoE zl module are PSE devices. A MED-capable VoIP telephone is a PD.
- **power source:** indicates the source of power in use by the device. Power sources for powered devices (PDs) include PSE, local (internal), and PSE/local. The switches covered in this guide advertise Unknown.
- **power priority:** indicates the power priority configured on the switch (PSE) port or the power priority configured on the MED-capable endpoint.
- **power value:** indicates the total power in watts that a switch port (PSE) can deliver at a particular time, or the total power in watts that the MED endpoint (PD) requires to operate.

To display the current power data for an LLDP-MED device connected to a port, use the following command:

```
show lldp info remote-device < port-list >
```

For more on this command, refer to page 14-62.

To display the current PoE configuration on the switch, use the following commands:

```
show power brief < port-list >
show power < port-list >
```

For more on PoE configuration and operation, refer to chapter 11, “Power Over Ethernet (PoE) Operation”.

**Configuring Location Data for LLDP-MED Devices**

You can configure a switch port to advertise location data for the switch itself, the physical wall-jack location of the endpoint (recommended), or the location of a DHCP server supporting the switch and/or endpoint. You also have the option of configuring these different address types:

- **civic address:** physical address data such as city, street number, and building information
- **ELIN (Emergency Location Identification Number):** an emergency number typically assigned to MLTS (Multiline Telephone System Operators) in North America
- **coordinate-based location:** attitude, longitude, and altitude information (Requires configuration via an SNMP application.)

**Syntax:**
```
[ no ] lldp config < port-list > medPortLocation < Address-Type >
```

Configures location or emergency call data the switch advertises per port in the location_id TLV. This TLV is for use by LLDP-MED endpoints employing location-based applications.

*Note:* The switch allows one medPortLocation entry per port (without regard to type). Configuring a new medPortLocation entry of any type on a port replaces any previously configured entry on that port.

```
civic-addr < COUNTRY-STR > < WHAT > < CA-TYPE > < CA-VALUE > . . .
[ < CA-TYPE > < CA-VALUE > ] . . . [ < CA-TYPE > < CA-VALUE > ]
```

This command enables configuration of a physical address on a switch port, and allows up to 75 characters of address information.

**COUNTRY-STR:** A two-character country code, as defined by ISO 3166. Some examples include FR (France), DE (Germany), and IN (India). This field is required in a civic-addr command. (For a complete list of country codes, visit [www.iso.org](http://www.iso.org) on the world wide web.)

**WHAT:** A single-digit number specifying the type of device to which the location data applies:
- **0:** Location of DHCP server
- **1:** Location of switch
- **2:** Location of LLDP-MED endpoint (recommended application)

This field is required in a civic-addr command.

—Continued—
Type/Value Pairs (CA-TYPE and CA-VALUE): This is a series of data pairs, each composed of a location data “type” specifier and the corresponding location data for that type. That is, the first value in a pair is expected to be the civic address “type” number (CA-TYPE), and the second value in a pair is expected to be the corresponding civic address data (CA-VALUE). For example, if the CA-TYPE for “city name” is “3”, then the type/value pair to define the city of Paris is “3 Paris”. Multiple type/value pairs can be entered in any order, although it is recommended that multiple pairs be entered in ascending order of the CA-TYPE. When an emergency call is placed from a properly configured class 3 endpoint device to an appropriate PSAP, the country code, device type, and type/value pairs configured on the switch port are included in the transmission. The “type” specifiers are used by the PSAP to identify and organize the location data components in an understandable format for response personnel to interpret. A civic-addr command requires a minimum of one type/value pair, but typically includes multiple type/value pairs as needed to configure a complete set of data describing a given location. CA-TYPE: This is the first entry in a type/value pair, and is a number defining the type of data contained in the second entry in the type/value pair (CA-VALUE). Some examples of CA-TYPE specifiers include:

- 3 = city
- 6 = street (name)
- 25 = building name

(Range: 0 - 255)

For a sample listing of CA-TYPE specifiers, refer to table 14-4 on page 14-57.

CA-VALUE: This is the second entry in a type/value pair, and is an alphanumeric string containing the location information corresponding to the immediately preceding CA-TYPE entry. Strings are delimited by either blank spaces, single quotes (‘...’), or double quotes (“...”). Each string should represent a specific data type in a set of unique type/value pairs comprising the description of a location, and each string must be preceded by a CA-TYPE number identifying the type of data in the string.
Note: A switch port allows one instance of any given CA-TYPE. For example, if a type/value pair of 6 Atlantic (to specify “Atlantic” as a street name) is configured on port A5 and later another type/value pair of 6 Pacific is configured on the same port, then Pacific replaces Atlantic in the civic address location configured for port A5.

elin-addr < emergency-number >

This feature is intended for use in Emergency Call Service (ECS) applications to support class 3 LLDP-MED VoIP telephones connected to a switch covered in this guide in a multiline telephone system (MLTS) infrastructure. An ELIN (Emergency Location Identification Number) is a valid North American Numbering Plan (NANP) format telephone number assigned to MLTS operators in North America by the appropriate authority. The ELIN is used to route emergency (E911) calls to a Public Safety Answering Point (PSAP).

(Range: 1-15 numeric characters)

Configuring Coordinate-Based Locations. Latitude, longitude, and altitude data can be configured per switch port using an SNMP management application. For more information, refer to the documentation provided with the application. A further source of information on this topic is RFC 3825-Dynamic Host Configuration Protocol Option for Coordinate-based Location Configuration Information.

Note

Endpoint use of data from a medPortLocation TLV sent by the switch is device-dependent. Refer to the documentation provided with the endpoint device.
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

Table 14-4. Some Location Codes Used in CA-TYPE Fields*

<table>
<thead>
<tr>
<th>Location Element</th>
<th>Code</th>
<th>Location Element</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>national subdivision</td>
<td>1</td>
<td>street number</td>
<td>19</td>
</tr>
<tr>
<td>regional subdivision</td>
<td>2</td>
<td>additional location data</td>
<td>22</td>
</tr>
<tr>
<td>city or township</td>
<td>3</td>
<td>unit or apartment</td>
<td>26</td>
</tr>
<tr>
<td>city subdivision</td>
<td>4</td>
<td>floor</td>
<td>27</td>
</tr>
<tr>
<td>street</td>
<td>6</td>
<td>room number</td>
<td>28</td>
</tr>
<tr>
<td>street suffix</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The code assignments in this table are examples from a work-in-progress (the internet draft titled “Dynamic Host Configuration Protocol (DHCPv4 and DHCPv6) Option for Civic Addresses Configuration Information draft-ietf-geopriv-dhcp-civil-06” dated May 30, 2005.) For the actual codes to use, contact the PSAP or other authority responsible for specifying the civic addressing data standard for your network.

Example of a Location Configuration. Suppose a system operator wanted to configure the following information as the civic address for a telephone connected to her company’s network through port A2 of a switch at the following location:

<table>
<thead>
<tr>
<th>Description</th>
<th>CA-Type</th>
<th>CA-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>national subdivision</td>
<td>1</td>
<td>CA</td>
</tr>
<tr>
<td>city</td>
<td>3</td>
<td>Widgitville</td>
</tr>
<tr>
<td>street</td>
<td>6</td>
<td>Main</td>
</tr>
<tr>
<td>street number</td>
<td>19</td>
<td>1433</td>
</tr>
<tr>
<td>unit</td>
<td>26</td>
<td>Suite 4-N</td>
</tr>
<tr>
<td>floor</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>room number</td>
<td>28</td>
<td>N4-3</td>
</tr>
</tbody>
</table>
Figure 14-14 shows the commands for configuring and displaying the above data.

```
ProCurve(config)# lldp config a2 medportlocation civic-addr US 2 1 CA 3 Widgitville 6 Main 19 1433 26 Suite_4-N 27 4 28 N4-3
ProCurve(config)# show lldp config a2

LLDP Port Configuration Detail

Port : A2
AdminStatus [Tx_Rx] : Tx_Rx
NotificationEnabled [False] : False
Med Topology Trap Enabled [False] : False

Country Name : US
What : 2
Ca-Type : 1
Ca-Length : 2
Ca-Value : CA
Ca-Type : 3
Ca-Length : 11
Ca-Value : Widgitville
Ca-Type : 6
Ca-Length : 4
Ca-Value : Main
Ca-Type : 19
Ca-Length : 4
Ca-Value : 1433
Ca-Type : 26
Ca-Length : 9
Ca-Value : Suite_4-N
Ca-Type : 27
Ca-Length : 1
Ca-Value : 4
Ca-Type : 28
Ca-Length : 4
Ca-Value : N4-3
```

Figure 14-14. Example of a Civic Address Configuration

Displaying Advertisement Data

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show lldp info local-device</td>
<td>below</td>
</tr>
<tr>
<td>walkmib lldpXdot3LocPortOperMauType</td>
<td></td>
</tr>
<tr>
<td>show lldp info remote-device</td>
<td>14-61</td>
</tr>
<tr>
<td>walkmib lldpXdot3RemPortAutoNegAdvertisedCap</td>
<td></td>
</tr>
<tr>
<td>show lldp info stats</td>
<td>14-64</td>
</tr>
</tbody>
</table>
Displaying Switch Information Available for Outbound Advertisements

These commands display the current switch information that will be used to populate outbound LLDP advertisements.

**Syntax** show lldp info local-device [ port-list ]

Without the [ port-list ] option, this command displays the global switch information and the per-port information currently available for populating outbound LLDP advertisements.

With the [ port-list ] option, this command displays only the following port-specific information that is currently available for outbound LLDP advertisements on the specified ports:

- PortType
- PortId
- PortDesc

**Note:** This command displays the information available on the switch. Use the lldp config < port-list > command to change the selection of information that is included in actual outbound advertisements. In the default LLDP configuration, all information displayed by this command is transmitted in outbound advertisements.

For example, in the default configuration, the switch information currently available for outbound LLDP advertisements appears similar to the display in figure 14-15 on page 14-60.
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

ProCurve(config)# show lldp info local-device

LLDP Local Device Information

  Chassis Type : mac-address
  Chassis Id : 00 08 83 08 db 20
  System Name : ProCurve
  System Description : HP J8697A ProCurve Switch 5406zl revision K.11.00 RO...
  System Capabilities Supported : bridge, router
  System Capabilities Enabled : bridge
  Management Address : 
    Type : ipv4
    Address : 

LLDP Port Information

<table>
<thead>
<tr>
<th>Port</th>
<th>PortType</th>
<th>PortId</th>
<th>PortDesc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>local</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>local</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>local</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>local</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>local</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>local</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Management Address field displays only the LLDP-configurable IP addresses on the switch. (Only manually-configured IP addresses are LLDP-configurable.) If the switch has only an IP address from a DHCP or Bootp server, then the Management Address field is empty (because there are no LLDP-configurable IP addresses available). For more on this topic, refer to “Remote Management Address” on page 14-30.

Figure 14-15. Example of Displaying the Global and Per-Port Information Available for Outbound Advertisements

ProCurve(config)# show lldp info local 1-2

LLDP Local Port Information Detail

  Port : 1
  PortType : local
  PortId : 1
  PortDesc : 1

  Port : 2
  PortType : local
  PortId : 2
  PortDesc : 2

Figure 14-16. Example of the Default Per-Port Information Content for Ports 1 and 2

Displaying the Current Port Speed and Duplex Configuration on a Switch Port. Port speed and duplex information for a switch port and a connected LLDP-MED endpoint can be compared for configuration mismatches by using an SNMP application. You can also use the switch CLI to display this information, if necessary. The following two commands provide methods for displaying speed and duplex information for switch ports. For
information on displaying the currently configured port speed and duplex on an LLDP-MED endpoint, refer to “Displaying the Current Port Speed and Duplex Configuration on a Switch Port” on page 14-60.

**Syntax:** show interfaces brief < port-list>

*Includes port speed and duplex configuration in the Mode column of the resulting display.*

**Displaying Advertisements Currently in the Neighbors MIB.** These commands display the content of the inbound LLDP advertisements received from other LLDP devices.
**Syntax** show lldp info remote-device [ port-list ]

Without the [ port-list ] option, this command provides a global list of the individual devices it has detected by reading LLDP advertisements. Discovered devices are listed by the inbound port on which they were discovered. Multiple devices listed for a single port indicates that such devices are connected to the switch through a hub.

**Discovering the same device on multiple ports** indicates that the remote device may be connected to the switch in one of the following ways:

- Through different VLANS using separate links. (This applies to switches that use the same MAC address for all configured VLANS.)
- Through different links in the same trunk.
- Through different links using the same VLAN. (In this case, spanning-tree should be invoked to prevent a network topology loop. Note that LLDP packets travel on links that spanning-tree blocks for other traffic types.)

With the [ port-list ] option, this command provides a listing of the LLDP data that the switch has detected in advertisements received on the specified ports. For descriptions of the various types of information displayed by these commands, refer to Table 14-3 on page 14-29.

<table>
<thead>
<tr>
<th>LocalPort</th>
<th>ChassisId</th>
<th>PortId</th>
<th>PortName</th>
<th>SysName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00 11 85 c6 04 60</td>
<td>17</td>
<td>17</td>
<td>HP ProCurve Switch</td>
</tr>
<tr>
<td>2</td>
<td>00 11 85 04 66 80</td>
<td>33</td>
<td>33</td>
<td>HP ProCurve Switch</td>
</tr>
</tbody>
</table>

**Figure 14-17. Example of a Global Listing of Discovered Devices**
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

ProCurve(config)# show lldp info remote-device a2

LLDP Remote Device Information Detail

Local Port : A2
ChassisType : network-address
ChassisId : 0f ff 7a 5c
PortType : mac-address
PortId : 08 00 0f 14 de f2
SysName : regDN 3004,<IP-Phone-Data>
System Descr : regDN 3004,<IP-Phone-Data>,h/w rev 0,ASIC rev 0,f/w Boot FW...
PortDescr : LAN port

System Capabilities Supported : bridge, telephone
System Capabilities Enabled : bridge, telephone

Remote Management Address

MED Information Detail

<table>
<thead>
<tr>
<th>EndpointClass</th>
<th>Class3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Policy Vlan id</td>
<td>10</td>
</tr>
<tr>
<td>Media Policy Priority</td>
<td>7</td>
</tr>
<tr>
<td>Media Policy Dscp</td>
<td>44</td>
</tr>
<tr>
<td>Media Policy Tagged</td>
<td>False</td>
</tr>
<tr>
<td>Poe Device Type</td>
<td>PD</td>
</tr>
<tr>
<td>Power Requested</td>
<td>47</td>
</tr>
<tr>
<td>Power Source</td>
<td>Unknown</td>
</tr>
<tr>
<td>Power Priority</td>
<td>High</td>
</tr>
</tbody>
</table>

Indicates the policy configured on the telephone. A configuration mismatch occurs if the supporting port is configured differently.

Figure 14-18. Example of an LLDPP-MED Listing of an Advertisement Received From an LLDPP-MED (VoIP Telephone) Source
Displaying LLDP Statistics

LLDP statistics are available on both a global and a per-port levels. Rebooting the switch resets the LLDP statistics counters to zero. Disabling the transmit and/or receive capability on a port “freezes” the related port counters at their current values.

**Syntax**

```
show lldp stats [port-list]
```

The global LLDP statistics command displays an overview of neighbor detection activity on the switch, plus data on the number of frames sent, received, and discarded per-port. The per-port LLDP statistics command enhances the list of per-port statistics provided by the global statistics command with some additional per-port LLDP statistics.

Global LLDP Counters:

**Neighbor Entries List Last Updated:** Shows the elapsed time since a neighbor was last added or deleted.

**New Neighbor Entries Count:** Shows the total of new LLDP neighbors detected since the last switch reboot. Disconnecting, then reconnecting a neighbor increments this counter.

**Neighbor Entries Deleted Count:** Shows the number of neighbor deletions from the MIB for AgeOut Count and forced drops for all ports. For example, if the admin status for port on a neighbor device changes from `tx_rx` or `txonly` to `disabled` or `rxonly`, then the neighbor device sends a “shutdown” packet out the port and ceases transmitting LLDP frames out that port. The device receiving the shutdown packet deletes all information about the neighbor received on the applicable inbound port and increments the counter.

**Neighbor Entries Dropped Count:** Shows the number of valid LLDP neighbors the switch detected, but could not add. This can occur, for example, when a new neighbor is detected when the switch is already supporting the maximum number of neighbors. Refer to “Neighbor Maximum” on page 14-66.

**Neighbor Entries AgeOut Count:** Shows the number of LLDP neighbors dropped on all ports due to Time-to-Live expiring.

— Continued —
Per-Port LLDP Counters:

**NumFramesRecvd**: Shows the total number of valid, inbound LLDP advertisements received from any neighbor(s) on `<port-list>`. Where multiple neighbors are connected to a port through a hub, this value is the total number of LLDP advertisements received from all sources.

**NumFramesSent**: Shows the total number of LLDP advertisements sent from `<port-list>`.

**NumFramesDiscarded**: Shows the total number of inbound LLDP advertisements discarded by `<port-list>`. This can occur, for example, when a new neighbor is detected on the port, but the switch is already supporting the maximum number of neighbors. Refer to “Neighbor Maximum” on page 14-66. This can also be an indication of advertisement formatting problems in the neighbor device.

**Frames Invalid**: Shows the total number of invalid LLDP advertisements received on the port. An invalid advertisement can be caused by header formatting problems in the neighbor device.

**TLVs Unrecognized**: Shows the total number of LLDP TLVs received on a port with a type value in the reserved range. This could be caused by a basic management TLV from a later LLDP version than the one currently running on the switch.

**TLVs Discarded**: Shows the total number of LLDP TLVs discarded for any reason. In this case, the advertisement carrying the TLV may be accepted, but the individual TLV was not usable.

**Neighbor Ageouts**: Shows the number of LLDP neighbors dropped on the port due to Time-to-Live expiring.
Figure 14-19. Example of a Global LLDP Statistics Display

Figure 14-20. Example of a Per-Port LLDP Statistics Display

LLDP Operating Notes

**Neighbor Maximum.** The neighbors table in the switch supports as many neighbors as there are ports on the switch. The switch can support multiple neighbors connected through a hub on a given port, but if the switch neighbor maximum is reached, advertisements from additional neighbors on the same or other ports will not be stored in the neighbors table unless some existing neighbors time-out or are removed.
LLDP Packet Forwarding: An 802.1D-compliant switch does not forward LLDP packets, regardless of whether LLDP is globally enabled or disabled on the switch.

One IP Address Advertisement Per-Port: LLDP advertises only one IP address per-port, even if multiple IP addresses are configured by `lldp config < port-list > ipAddrEnable` on a given port.

802.1Q VLAN Information. LLDP packets do not include 802.1Q header information, and are always handled as untagged packets.

Effect of 802.1X Operation. If 802.1X port security is enabled on a port and a connected device is not authorized, LLDP packets are not transmitted or received on that port. Any neighbor data stored in the neighbor MIB for that port prior to the unauthorized device connection remains in the MIB until it ages out. If an unauthorized device later becomes authorized, LLDP transmit and receive operation resumes.

Neighbor Data Can Remain in the Neighbor Database After the Neighbor Is Disconnected. After disconnecting a neighbor LLDP device from the switch, the neighbor can continue to appear in the switch’s neighbor database for an extended period if the neighbor’s `holdtime-multiplier` is high; especially if the `refresh-interval` is large. Refer to “Changing the Time-to-Live for Transmitted Advertisements” on page 14-36.

Mandatory TLVs. All mandatory TLVs required for LLDP operation are also mandatory for LLDP-MED operation.

Determining the Switch Port Number Included in Topology Change Notification Traps. Enabling topology change notification on a switch port and then connecting or disconnecting an LLDP-MED endpoint on that port causes the switch to send an SNMP trap to notify the designated management station(s). The port number included in the trap corresponds to the internal number the switch maintains for the designated port, and not the port’s external (slot/number) identity. To match the port’s external slot/number to the internal port number appearing in an SNMP trap, use the `walkmib ifDescr` command, as shown in the following figure:
LLDP and CDP Data Management

This section describes points to note regarding LLDP (Link-Layer Discovery Protocol) and CDP (Cisco Discovery Protocol) data received by the switch from other devices. LLDP operation includes both transmitting LLDP packets to neighbor devices and reading LLDP packets received from neighbor devices. CDP operation is limited to reading incoming CDP packets from neighbor devices. (ProCurve switches do not generate CDP packets.)

LLDP and CDP Neighbor Data

With both LLDP and (read-only) CDP enabled on a switch port, the port can read both LLDP and CDP advertisements, and stores the data from both types of advertisements in its neighbor database. (The switch only stores CDP data that has a corresponding field in the LLDP neighbor database.) The neighbor database itself can be read by either LLDP or CDP methods or by using the `show lldp` commands. Take note of the following rules and conditions:
If the switch receives both LLDP and CDP advertisements on the same port from the same neighbor the switch stores this information as two separate entries if the advertisements have differences chassis ID and port ID information.

If the chassis and port ID information are the same, the switch stores this information as a single entry. That is, LLDP data overwrites the corresponding CDP data in the neighbor database if the chassis and port ID information in the LLDP and CDP advertisements received from the same device is the same.

Data read from a CDP packet does not support some LLDP fields, such as “System Descr”, “SystemCapSupported”, and “ChassisType”. For such fields, LLDP assigns relevant default values. Also:

- The LLDP “System Descr” field maps to CDP’s “Version” and “Platform” fields.
- The switch assigns “ChassisType” and “PortType” fields as “local” for both the LLDP and the CDP advertisements it receives.
- Both LLDP and CDP support the “System Capability” TLV. However, LLDP differentiates between what a device is capable of supporting and what it is actually supporting, and separates the two types of information into subelements of the System Capability TLV. CDP has only a single field for this data. Thus, when CDP System Capability data is mapped to LLDP, the same value appears in both LLDP System Capability fields.
- System Name and Port Descr are not communicated by CDP, and thus are not included in the switch’s Neighbors database.

**Note**

Because ProCurve switches do not generate CDP packets, they are not represented in the CDP data collected by any neighbor devices running CDP.

A switch with CDP disabled forwards the CDP packets it receives from other devices, but does not store the CDP information from these packets in its own MIB.

LLDP data transmission/collection and CDP data collection are both enabled in the switch’s default configuration. In this state, an SNMP network management application designed to discover devices running either CDP or LLDP can retrieve neighbor information from the switch regardless of whether LLDP or CDP is used to collect the device-specific information.
By default the switches covered in this guide have CDP enabled on each port. This is a read-only capability, meaning that the switch can receive and store information about adjacent CDP devices but does not generate CDP packets.

When a CDP-enabled switch receives a CDP packet from another CDP device, it enters that device’s data in the CDP Neighbors table, along with the port number where the data was received (and does not forward the packet). The switch also periodically purges the table of any entries that have expired. (The hold time for any data entry in the switch’s CDP Neighbors table is configured in the device transmitting the CDP packet, and cannot be controlled in the switch receiving the packet.) A switch reviews the list of CDP neighbor entries every three seconds, and purges any expired entries.

**CDP Operation and Commands**

By default the switches covered in this guide have CDP enabled on each port. This is a read-only capability, meaning that the switch can receive and store information about adjacent CDP devices but does not generate CDP packets.

When a CDP-enabled switch receives a CDP packet from another CDP device, it enters that device’s data in the CDP Neighbors table, along with the port number where the data was received (and does not forward the packet). The switch also periodically purges the table of any entries that have expired. (The hold time for any data entry in the switch’s CDP Neighbors table is configured in the device transmitting the CDP packet, and cannot be controlled in the switch receiving the packet.) A switch reviews the list of CDP neighbor entries every three seconds, and purges any expired entries.
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cdp</td>
<td>14-71</td>
</tr>
<tr>
<td>show cdp neighbors [&lt;port-list&gt; detail]</td>
<td>14-72</td>
</tr>
<tr>
<td>[detail &lt;port-list&gt;]</td>
<td></td>
</tr>
<tr>
<td>[no] cdp run</td>
<td>14-73</td>
</tr>
<tr>
<td>[no] cdp enable &lt;port-list&gt;</td>
<td>14-73</td>
</tr>
</tbody>
</table>

**Note**

For details on how to use an SNMP utility to retrieve information from the switch’s CDP Neighbors table maintained in the switch’s MIB (Management Information Base), refer to the documentation provided with the particular SNMP utility.

**Viewing the Switch’s Current CDP Configuration.** CDP is shown as enabled/disabled both globally on the switch and on a per-port basis.

**Syntax**: `show cdp`

Lists the switch’s global and per-port CDP configuration.

The following example shows the default CDP configuration.

```
ProCurve(config)# show cdp
   Global CDP information
       Enable CDP [Yes] : Yes

   Port CDP
       ---- ---------
       A1       enabled
       A2       enabled
       A3       enabled
       :        :
       :        :
```

*Figure 14-22. Example of Show CDP with the Default CDP Configuration*
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

Viewing the Switch’s Current CDP Neighbors Table. Devices are listed by the port on which they were detected.

**Syntax:** `show cdp neighbors`

*Lists the neighboring CDP devices the switch detects, with a subset of the information collected from the device’s CDP packet.*

```
[[e] port-num [detail]]
```

*Lists the CDP device connected to the specified port. (Allows only one port at a time.) Using `detail` provides a longer list of details on the CDP device the switch detects on the specified port.*

```
[detai[[e] port-num]]
```

*Provides a list of the details for all of the CDP devices the switch detects. Using `port-num` produces a list of details for the selected port.*

Figure 14-23 lists CDP devices that the switch has detected by receiving their CDP packets.

<table>
<thead>
<tr>
<th>Port</th>
<th>Device ID</th>
<th>Platform</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Accounting(0030c1-7fco40)</td>
<td>J4812A ProCurve Switch...</td>
<td>3</td>
</tr>
<tr>
<td>A2</td>
<td>Research(0060e0-889e43)</td>
<td>J4121A ProCurve Switch...</td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td>Support(0060a0-761a45)</td>
<td>J4121A ProCurve Switch...</td>
<td>3</td>
</tr>
<tr>
<td>A7</td>
<td>Marketing(0030c5-38dc59)</td>
<td>J4813A ProCurve Switch...</td>
<td>3</td>
</tr>
<tr>
<td>A12</td>
<td>Mgmt NIC(099a05-09df9b)</td>
<td>NIC Model X666</td>
<td>H</td>
</tr>
<tr>
<td>A12</td>
<td>Mgmt NIC(099a05-09df11)</td>
<td>NIC Model X666</td>
<td>H</td>
</tr>
</tbody>
</table>

**Figure 14-23.  Example of CDP Neighbors Table Listing**

Enabling CDP Operation. Enabling CDP operation (the default) on the switch causes the switch to add entries to its CDP Neighbors table for any CDP packets it receives from other neighboring CDP devices.
Disabling CDP Operation. Disabling CDP operation clears the switch’s CDP Neighbors table and causes the switch to drop inbound CDP packets from other devices without entering the data in the CDP Neighbors table.

**Syntax:** [no] cdp run

*Enables or disables CDP read-only operation on the switch. (Default: Enabled)*

For example, to disable CDP read-only on the switch:

ProCurve(config)# no cdp run

When CDP is disabled:

- **show cdp neighbors** displays an empty CDP Neighbors table
- **show cdp** displays

  Global CDP information
  Enable CDP [Yes]: No

Enabling or Disabling CDP Operation on Individual Ports. In the factory-default configuration, the switch has all ports enabled to receive CDP packets. Disabling CDP on a port causes it to drop inbound CDP packets without recording their data in the CDP Neighbors table.

**Syntax:** [no] cdp enable < [e] port-list >

For example, to disable CDP on port A1:

ProCurve(config)# no cdp enable a1
Configuring for Network Management Applications
LLDP (Link-Layer Discovery Protocol)

—This page intentionally unused—
File Transfers

Contents

Overview ....................................................... A-3

Downloading Switch Software ............................ A-3
  General Software Download Rules .................... A-4
  Using TFTP To Download Switch Software from a Server ........ A-4
    Menu: TFTP Download from a Server to Primary Flash .......... A-5
    CLI: TFTP Download from a Server to Flash ..................... A-6
  Using Secure Copy and SFTP .......................... A-8
    How It Works ........................................... A-9
    The SCP/SFTP Process ................................. A-10
  Disable TFTP and Auto-TFTP for Enhanced Security ........ A-10
  Command Options ....................................... A-12
  Authentication ......................................... A-13
  SCP/SFTP Operating Notes ............................. A-13
  Using Xmodem to Download Switch Software From a PC or UNIX Workstation ................................................................. A-15
    Menu: Xmodem Download to Primary Flash .................... A-15
    CLI: Xmodem Download from a PC or UNIX Workstation to Primary or Secondary Flash .................. A-16
  Switch-to-Switch Download ............................ A-17
    Menu: Switch-to-Switch Download to Primary Flash .......... A-17
    CLI: Switch-To-Switch Downloads ........................ A-18
  Using PCM+ to Update Switch Software ................ A-20

Troubleshooting TFTP Downloads ...................... A-20

Transferring Switch Configurations and ACL Command Files .......................... A-21
  TFTP: Copying a Configuration from a Remote Host ........ A-22
  TFTP: Copying a Configuration File to a Remote Host ........ A-22
  TFTP: Uploading an ACL Command File from a TFTP Server A-23
  Xmodem: Copying a Configuration File from the Switch to a Serially Connected PC or UNIX Workstation ........ A-25
Xmodem: Copying a Configuration File from a Serially Connected PC or UNIX Workstation ................. A-25

Copying Diagnostic Data to a Remote Host, PC or UNIX Workstation ........................................... A-27
  Copying Command Output to a Destination Device ........ A-27
  Copying Event Log Output to a Destination Device ........ A-28
  Copying Crash Data Content to a Destination Device .... A-28
  Copying Crash Log Data Content to a Destination Device . A-29
Overview

You can download new switch software, upload or download switch configuration files, and upload command files for configuring Access Control Lists (ACLs).

This appendix includes the following information:
- Downloading switch software (begins below)
- Transferring switch configurations (begins on page A-21)
- Uploading ACL command files (page A-23)

Note that this manual uses the terms switch software and software image to refer to the downloadable software files of the type the switch uses to operate its networking features. Other terms sometimes used for the same purpose are Operating System, or OS.

For information on how switch memory operates, including primary and secondary flash, refer to Chapter 6, “Switch Memory and Configuration”.

Downloading Switch Software

ProCurve periodically provides switch software updates through the ProCurve Networking web site. For more information, refer to the support and warranty booklet shipped with the switch, or visit www.procurve.com and click on software updates. After you acquire a new switch software version, you can use one of the following methods for downloading the software to the switch:

Software Download Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFTP</td>
<td>n/a</td>
<td>page A-5</td>
<td>page A-6</td>
<td>—</td>
</tr>
<tr>
<td>Xmodem</td>
<td>n/a</td>
<td>page A-15</td>
<td>page A-16</td>
<td>—</td>
</tr>
<tr>
<td>Switch-to-Switch</td>
<td>n/a</td>
<td>page A-17</td>
<td>page A-18</td>
<td></td>
</tr>
<tr>
<td>Software Update Manager in PCM+</td>
<td>Refer to the documentation provided with PCM+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


General Software Download Rules

- Switch software that you download via the menu interface always goes to primary flash.
- After a software download, you must reboot the switch to implement the new software. Until a reboot occurs, the switch continues to run on the software it was using before the download commenced.

Note

Downloading new switch software does not change the current switch configuration. The switch configuration is contained in separate files that can also be transferred. Refer to “Transferring Switch Configurations” on page A-21.

In most cases, if a power failure or other cause interrupts a flash image download, the switch reboots with the image previously stored in primary flash. In the unlikely event that the primary image is corrupted (which may occur if a download is interrupted by a power failure), the switch goes into boot ROM mode. In this case, use the boot ROM console to download a new image to primary flash. Refer to “Restoring a Flash Image” on page C-56.

Using TFTP To Download Switch Software from a Server

This procedure assumes that:

- A software version for the switch has been stored on a TFTP server accessible to the switch. (The software file is typically available from the ProCurve Networking web site at www.procurve.com.)
- The switch is properly connected to your network and has already been configured with a compatible IP address and subnet mask.
- The TFTP server is accessible to the switch via IP.

Before you use the procedure, do the following:

- Obtain the IP address of the TFTP server in which the software file has been stored.
- If VLANs are configured on the switch, determine the name of the VLAN in which the TFTP server is operating.
- Determine the name of the software file stored in the TFTP server for the switch (for example, E0820.swi).

Note

If your TFTP server is a UNIX workstation, ensure that the case (upper or lower) that you specify for the filename is the same case as the characters in the software filenames on the server.
Menu: TFTP Download from a Server to Primary Flash

Note that the menu interface accesses only the primary flash.

1. In the console Main Menu, select Download OS to display the screen in figure A-1. (The term “OS”, or “operating system” refers to the switch software):

```
------------------------------------------ CONSOLE - MANAGER MODE ------------------------------------------
Download OS

Current Firmware revision : K.11.00

Method [TFTP] : TFTP
TFTP Server :
Remote File Name :

Actions-> Cancel Edit eXecute Help

Select the file transfer method (TFTP and XMODM are currently supported). Use arrow keys to change field selection, <Space> to toggle field choices, and <Enter> to go to actions.
```

![Figure A-1. Example of a Download OS (Software) Screen (Default Values)](image)

3. Ensure that the Method field is set to TFTP (the default).
4. In the TFTP Server field, type in the IP address of the TFTP server in which the software file has been stored.
5. In the Remote File Name field, type the name of the software file. If you are using a UNIX system, remember that the filename is case-sensitive.
6. Press [Enter], then [X] (for eXecute) to begin the software download. The following screen then appears:

```
------------------------------------------ CONSOLE - MANAGER MODE ------------------------------------------
Download OS

Current Firmware revision : E.08.00
Method [TFTP] : TFTP
TFTP Server : 10.228.227.105
Remote File Name : K.11.00.swi

+------------------------------------------------------------+
<table>
<thead>
<tr>
<th>Received 370,000 bytes of OS download.</th>
</tr>
</thead>
</table>
+------------------------------------------------------------+
```

![Figure A-2. Example of the Download OS (Software) Screen During a Download](image)
A “progress” bar indicates the progress of the download. When the entire software file has been received, all activity on the switch halts and you will see **Validating and writing system software to FLASH...**

7. After the primary flash memory has been updated with the new software, you must reboot the switch to implement the newly downloaded software. Return to the Main Menu and press [6] (for **Reboot Switch**). You will then see this prompt:

```
Continue reboot of system?  :  No
```

Press the space bar once to change No to Yes, then press [Enter] to begin the reboot.

---

**Note**

When you use the menu interface to download a switch software, the new image is always stored in primary flash. Also, using the Reboot Switch command in the Main Menu always reboots the switch from primary flash. Rebooting the switch from the CLI gives you more options. Refer to “Rebooting the Switch” on page 6-18.

---

8. After you reboot the switch, confirm that the software downloaded correctly:

a. From the Main Menu, select **1. Status and Counters**, and from the Status and Counters menu, select **1. General System Information**

b. Check the **Firmware revision** line.

### CLI: TFTP Download from a Server to Flash

**Syntax:**

```
copy tftp flash <ip-address> <remote-file> [ <primary | secondary > ]
```

*This command automatically downloads a switch software file to primary or secondary flash. Note that if you do not specify the flash destination, the Xmodem download defaults to primary flash.*

For example, to download a switch software file named E0800.swi from a TFTP server with the IP address of 10.28.227.103 to primary flash:
1. Execute `copy` as shown below:

```
ProCurve# copy tftp flash 10.28.227.103 k0800.swi
The Primary OS Image will be deleted, continue [y/n]? Y
01431K
```

Dynamic counter continually displays the number of bytes transferred.

This message means that the image you want to upload will replace the image currently in primary flash.

![Figure A-3. Example of the Command to Download an OS (Switch Software)](image)

2. When the switch finishes downloading the software file from the server, it displays this progress message:

   **Validating and Writing System Software to FLASH …**

3. When the download finishes, you must reboot the switch to implement the newly downloaded software image. To do so, use one of the following commands:

   **Syntax:** `boot system flash < primary | secondary >`

   *Boots from the selected flash.*

   **Syntax:** `reload`

   *Boots from the flash image and startup-config file. A switch covered in this guide (with multiple configuration files), also uses the current startup-config file.*

   (For more on these commands, refer to “Rebooting the Switch” on page 6-18.)

4. To confirm that the software downloaded correctly, execute `show system` and check the Firmware revision line.

If you need information on primary/secondary flash memory and the boot commands, refer to “Using Primary and Secondary Flash Image Options” on page 6-13.
Using Secure Copy and SFTP

For some situations you may want to use a secure method to issue commands or copy files to the switch. By opening a secure, encrypted SSH session you can then use a third-party software application to take advantage of Secure Copy (SCP) and Secure ftp (SFTP). SCP and SFTP provide a secure alternative to TFTP for transferring information that may be sensitive (like switch configuration files) to and from the switch. Essentially you are creating a secure SSH tunnel as a way to transfer files with SFTP and SCP channels.

To use these commands you must install on the administrator workstation a third-party application software client that supports the SFTP and/or SCP functions. Some examples of software that supports SFTP and SCP are PuTTY, Open SSH, WinSCP, and SSH Secure Shell. Most of these are freeware and may be downloaded without cost or licensing from the internet. There are differences in the way these clients work, so be sure you also download the documentation.

As described earlier in this chapter you can use a TFTP client on the administrator workstation to update software images. This is a plain text mechanism and it connects to a standalone TFTP server or another ProCurve switch acting as a TFTP server to obtain the software image file(s). Using SCP and SFTP allows you to maintain your switches with greater security. You can also roll out new software images with automated scripts that make it easier to upgrade multiple switches simultaneously and securely.

SFTP (secure file transfer protocol) is unrelated to FTP, although there are some functional similarities. Once you set up an SFTP session through an SSH tunnel, some of the commands are the same as FTP commands. Certain commands are not allowed by the SFTP server on the switch, such as those that create files or folders. If you try to issue commands such as create or remove using SFTP the switch server returns an error message.

You can use SFTP just as you would TFTP to transfer files to and from the switch, but with SFTP your file transfers are encrypted and require authentication, so they are more secure than they would be using TFTP. SFTP works only with SSH version 2 (SSH v2).
File Transfers

Downloading Switch Software

Note

SFTP over SSH version 1 (SSH v1) is not supported. A request from either the client or the switch (or both) using SSH v1 generates an error message. The actual text of the error message differs, depending on the client software in use. Some examples are:

- Protocol major versions differ: 2 vs. 1
  Connection closed

- Protocol major versions differ: 1 vs. 2
  Connection closed

- Received disconnect from <ip-addr>: /usr/local/libexec/sftp-server: command not supported
  Connection closed

SCP (secure copy) is an implementation of the BSD rcp (Berkeley UNIX remote copy) command tunneled through an SSH connection.

SCP is used to copy files to and from the switch when security is required. SCP works with both SSH v1 and SSH v2. Be aware that the most third-party software application clients that support SCP use SSHv1.

How It Works

The general process for using SCP and SFTP involves three steps:

1. Open an SSH tunnel between your computer and the switch if you haven’t already done so. (This step assumes that you have already set up SSH on the switch.)

2. Execute `ip ssh filetransfer` to tell the switch that you want to enable secure file transfer.

3. Use a third-party client application for SCP and SFTP commands.
The SCP/SFTP Process

To use SCP and SFTP:

1. Open an SSH session as you normally would to establish a secure encrypted tunnel between your computer and the switch. For more detailed directions on how to open an SSH session refer to the chapter titled “Configuring Secure Shell (SSH)” in the Access Security Guide for your switch. Please note that this is a one-time procedure for new switches or connections. If you have already done it once you should not need to do it a second time.

2. To enable secure file transfer on the switch (once you have an SSH session established between the switch and your computer), open a terminal window and type in the following command:

   ProCurve(config)# ip ssh filetransfer

Disable TFTP and Auto-TFTP for Enhanced Security

Using the ip ssh filetransfer command to enable Secure FTP (SFTP) automatically disables TFTP and auto-TFTP (if either or both are enabled).

```
ProCurve(config)# ip ssh filetransfer
Tftp and auto-tftp have been disabled.
ProCurve(config)# sho run

Running configuration:

; J8697 Configuration Editor; Created on release #K.11.XX

hostname "ProCurve"
module 1 type J8702A
module 2 type J702A
vlan 1
   name "DEFAULT_VLAN"
   untagged A1-A24,B1-B24
   ip address 10.28.234.176 255.255.240.0
   exit
   [ip ssh filetransfer]
   [no tftp-enable]
   password manager
   password operator
```

Figure A-4. Example of Switch Configuration with SFTP Enabled
If you enable SFTP, then later disable it, TFTP and auto-TFTP remain disabled unless they are explicitly re-enabled.

Operating rules are:

- The TFTP feature is enabled by default, and can be enabled or disabled through the CLI, the Menu interface, or an SNMP application. Auto-TFTP is disabled by default and must be configured through the CLI.

---

**ProCurve**

---

**CONSOLE - MANAGER MODE**

---

Switch Configuration - System Information

System Name : ProCurve
System Contact :
System Location :

Inactivity Timeout (min) [0] : 0
MAC Age Time (sec) [300] : 300
Inbound Telnet Enabled [Yes] : Yes
Web Agent Enabled [Yes] : Yes
Time Sync Method [None] : TIMEP
TimeP Mode [Disabled] : Disabled
Tftp-enable [Yes] : Yes

Time Zone [0] : 0
Daylight Time Rule [None] : None

Enables/Disables TFTP.

**Note:** If SFTP is enabled, this field will be set to No. You cannot use this field to enable TFTP if SFTP is enabled. Attempting to do so produces an **Inconsistent value** message in the banner below the *Actions* line.

---

**Figure A-5. Using the Menu Interface To Disable TFTP**

- While SFTP is enabled, TFTP and auto-TFTP cannot be enabled from the CLI. Attempting to enable either non-secure TFTP option while SFTP is enabled produces one of the following messages in the CLI:

  SFTP must be disabled before enabling tftp.

  SFTP must be disabled before enabling auto-tftp.

Similarly, while SFTP is enabled, TFTP cannot be enabled using an SNMP management application. Attempting to do so generates an “inconsistent value” message. (An SNMP management application cannot be used to enable or disable auto-TFTP.)

- To enable SFTP by using an SNMP management application, you must first disable TFTP and, if configured, auto-TFTP on the switch. You can use either an SNMP application or the CLI to disable TFTP, but must use the CLI to disable auto-TFTP. The following two CLI commands disable TFTP and auto-TFTP on the switch.
File Transfers
Downloading Switch Software

**Syntax:** no tftp-enable

This command disables all TFTP operation on the switch except for the auto-TFTP feature. To re-enable TFTP operation, use the tftp-enable command. When TFTP is disabled, the instances of tftp in the CLI copy command and the Menu interface “Download OS” screen become unavailable.

**Note:** This command does not disable auto-TFTP operation. To disable an auto-TFTP command configured on the switch, use the no auto-tftp command described below to remove the command entry from the switch’s configuration.

**Syntax:** no auto-tftp

If auto-TFTP is configured on the switch, this command deletes the auto-tftp entry from the switch configuration, thus preventing auto-tftp operation if the switch reboots.

**Note:** This command does not affect the current TFTP-enable configuration on the switch.

**Command Options**

If you need to enable SSH v2 (which is required for SFTP) enter this command:

```
ProCurve(config)# ip ssh version 2
```

**Note**

As a matter of policy, administrators should not enable the SSHv1-only or the SSHv1-or-v2 advertisement modes. SSHv1 is supported on only some legacy switches (such as the ProCurve Series 2500 switches).

To confirm that SSH is enabled type in the command

```
ProCurve(config)# show ip ssh
```

3. Once you have confirmed that you have enabled an SSH session (with the show ip ssh command) you can then open your third-party software client application to begin using the SCP or SFTP commands to safely transfer files or issue commands to the switch.

If you need to disable secure file transfer:

```
ProCurve(config)# no ip ssh filetransfer
```
Authentication

Switch memory allows up to ten public keys. This means the authentication and encryption keys you use for your third-party client SCP/SFTP software can differ from the keys you use for the SSH session, even though both SCP and SFTP use a secure SSH tunnel.

**Note**

SSH authentication through a TACACS+ server and use of SCP or SFTP through an SSH tunnel are mutually exclusive. Thus, if the switch is configured to use TACACS+ for authenticating a secure Telnet SSH session on the switch, you cannot enable SCP or SFTP. Also, if SCP or SFTP is enabled on the switch, you cannot enable TACACS+ authentication for a secure Telnet SSH. On the switches covered in this guide, the same mutual exclusion also applies to RADIUS servers. The switch displays a message similar to the following if there is an attempt to configure either option when the other is already configured:

RADIUS/TACACS authentication for ssh sessions and secure file transfer (scp/sftp) may not be configured simultaneously.

To provide username/password authentication on a switch providing SCP or SFTP support, use the switch’s local username/password facility. Otherwise, you can use the switch’s local public key for authentication.

Some clients such as PSCP (PuTTY SCP) automatically compare switch host keys for you. Other clients require you to manually copy and paste keys to the `~/.ssh/known_hosts` file. Whatever SCP/SFTP software tool you use, after installing the client software you must verify that the switch host keys are available to the client.

Because the third-party software utilities you may use for SCP/SFTP vary, you should refer to the documentation provided with the utility you select before performing this process.

**SCP/SFTP Operating Notes**

- When an SFTP client connects, the switch provides a file system displaying all of its available files and folders. No file or directory creation is permitted by the user. Files may only be uploaded or downloaded, according to the permissions mask. All of the necessary files the switch will need are already in place on the switch. You do not need to (nor can you create) new files.

- The switch supports one SFTP session or one SCP session at a time.
All files have read-write permission. Several SFTP commands, such as `create` or `remove`, are not allowed and return an error message. The switch displays the following files:

```
/
  +---cfg
  |   running-config
  |   startup-config
  +---log
  |   crash-data
  |   crash-data-a
  |   crash-data-b
  |   crash-data-c
  |   crash-data-d  5406zl/5412zl only
  |   crash-data-e
  |   crash-data-f
  |   crash-data-g  5412zl only
  |   crash-data-h
  |   crash-data-I
  |   crash-data-J
  |   crash-data-K
  |   crash-data-L
  |   crash-log
  |   crash-log-a
  |   crash-log-b
  |   crash-log-c
  |   crash-log-d  5406zl/5412zl only
  |   crash-log-e
  |   crash-log-f
  |   crash-log-g  5412zl only
  |   crash-log-h
  |   crash-log-I
  |   crash-log-J
  |   crash-log-K
  |   crash-log-L
  |   event log
  +---os
  |   primary
  |   secondary
\---ssh
  +---mgr_keys
  |   authorized_keys
\---oper_keys
    authorized_keys
```
Once you have configured your switch for secure file transfers with SCP and SFTP, files can be copied to or from the switch in a secure (encrypted) environment and TFTP is no longer necessary.

Using Xmodem to Download Switch Software From a PC or UNIX Workstation

This procedure assumes that:

- The switch is connected via the Console RS-232 port to a PC operating as a terminal. (Refer to the Installation and Getting Started Guide you received with the switch for information on connecting a PC as a terminal and running the switch console interface.)
- The switch software is stored on a disk drive in the PC.
- The terminal emulator you are using includes the Xmodem binary transfer feature. (For example, in the HyperTerminal application included with Windows NT, you would use the Send File option in the Transfer dropdown menu.)

Menu: Xmodem Download to Primary Flash

Note that the menu interface accesses only the primary flash.

1. From the console Main Menu, select

   7. Download OS


3. Use the Space bar to select XMODEM in the Method field.

4. Press [Enter], then [X] (for eXecute) to begin the software download. The following message then appears:

   Press enter and then initiate Xmodem transfer from the attached computer.....

5. Press [Enter] and then execute the terminal emulator command(s) to begin Xmodem binary transfer. For example, using HyperTerminal:
   a. Click on Transfer, then Send File.
   b. Type the file path and name in the Filename field.
   c. In the Protocol field, select Xmodem.
   d. Click on the [Send] button.
The download will then commence. It can take several minutes, depending on the baud rate set in the switch and in your terminal emulator.

6. After the primary flash memory has been updated with the new software, you must reboot the switch to implement the newly downloaded software. Return to the Main Menu and press [6] (for Reboot Switch). You will then see this prompt:

Continue reboot of system? : No

Press the space bar once to change No to Yes, then press [Enter] to begin the reboot.

7. To confirm that the software downloaded correctly:
   a. From the Main Menu, select
      
      1. Status and Counters
         1. General System Information
   b. Check the Firmware revision line.

**CLI: Xmodem Download from a PC or UNIX Workstation to Primary or Secondary Flash**

Using Xmodem and a terminal emulator, you can download a software file to either primary or secondary flash.

*Syntax:* `copy xmodem flash [< primary | secondary >]`

Downloads a software file to primary or secondary flash. If you do not specify the flash destination, the Xmodem download defaults to primary flash.

For example, to download a switch software file named E0822.swi from a PC (running a terminal emulator program such as HyperTerminal) to primary flash:

1. Execute the following command in the CLI:

   ```
   HPswitch# copy xmodem flash
   The Primary OS Image will be deleted, continue [y/n]? y
   Press 'Enter' and start XMODEM on your host...
   ```

2. Execute the terminal emulator commands to begin the Xmodem transfer. For example, using HyperTerminal:
   a. Click on **Transfer**, then **Send File**.
b. Type the file path and name in the Filename field.
c. In the Protocol field, select Xmodem.
d. Click on the [Send] button.

The download can take several minutes, depending on the baud rate used in the transfer.

3. When the download finishes, you must reboot the switch to implement the newly downloaded software. To do so, use one of the following commands:

**Syntax:** boot system flash <primary | secondary>

*Reboots from the selected flash.*

**Syntax:** reload

*Reboots from the flash image currently in use.*

(For more on these commands, see “Rebooting the Switch” on page 6-18.)

4. To confirm that the software downloaded correctly:

ProCurve> show system

Check the **Firmware revision** line. It should show the software version that you downloaded in the preceding steps.

If you need information on primary/secondary flash memory and the boot commands, refer to “Using Primary and Secondary Flash Image Options” on page 6-13.

**Switch-to-Switch Download**

You can use TFTP to transfer a software image between two switches of the same series. The menu interface enables you to transfer primary-to-primary or secondary-to-primary. The CLI enables all combinations of flash location options.

**Menu: Switch-to-Switch Download to Primary Flash**

Using the menu interface, you can download a switch software file from either the primary or secondary flash of one switch to the primary flash of another switch of the same series.

1. From the switch console Main Menu in the switch to receive the download, select 7. **Download OS** screen.
2. Ensure that the **Method** parameter is set to **TFTP** (the default).

3. In the **TFTP Server** field, enter the IP address of the remote switch containing the software file you want to download.

4. For the **Remote File Name**, enter one of the following:
   - To download the software in the primary flash of the source switch, type "flash" in lowercase characters.
   - To download the software in the secondary flash of the source switch, type `/os/secondary`.

5. Press [Enter], then [X] (for **eXecute**) to begin the software download.

6. A “progress” bar indicates the progress of the download. When the entire switch software download has been received, all activity on the switch halts and the following messages appear:

   **Validating and writing system software to FLASH...**

7. After the primary flash memory has been updated with the new software, you must reboot the switch to implement the newly downloaded software. Return to the Main Menu and press [6] (for **Reboot Switch**). You will then see this prompt:

   Continue reboot of system?  :  No

   Press the space bar once to change No to Yes, then press [Enter] to begin the reboot.

8. To confirm that the software downloaded correctly:
   a. From the Main Menu, select
      **Status and Counters**
      **General System Information**
   b. Check the **Firmware revision** line.

**CLI: Switch-To-Switch Downloads**

Where two switches in your network belong to the same series, you can download a software image between them by initiating a **copy tftp** command from the destination switch. The options for this CLI feature include:

- Copy from primary flash in the source to either primary or secondary in the destination.
- Copy from either primary or secondary flash in the source to either primary or secondary flash in the destination.
File Transfers

Downloading Switch Software

Downloading from Primary Only.

**Syntax:** `copy tftp flash <ip-addr> flash [ primary | secondary ]`

*This command (executed in the destination switch) downloads the software flash in the source switch’s primary flash to either the primary or secondary flash in the destination switch.*

If you do not specify either a primary or secondary flash location for the destination, the download automatically goes to primary flash.

For example, to download a software file from primary flash in a switch with an IP address of 10.29.227.103 to the primary flash in the destination switch, you would execute the following command in the destination switch’s CLI:

```
ProCurve# copy tftp flash 10.29.227.103 flash
Device will be rebooted, do you want to continue [y/n] Y
00107K
```

**Figure A-6. Switch-To-Switch, from Primary in Source to Either Flash in Destination**

Downloading from Either Flash in the Source Switch to Either Flash in the Destination Switch.

**Syntax:** `copy tftp flash <ip-addr> </os/primary> | </os/secondary> [ primary | secondary ]`

*This command (executed in the destination switch) gives you the most options for downloading between switches. If you do not specify either a primary or secondary flash location for the destination, the download automatically goes to primary flash.*

For example, to download a software file from secondary flash in a switch with an IP address of 10.28.227.103 to the secondary flash in a destination switch, you would execute the following command in the destination switch’s CLI:
File Transfers
Troubleshooting TFTP Downloads

Using PCM+ to Update Switch Software

ProCurve Manager Plus includes a software update utility for updating on ProCurve switch products. For further information, refer to the *Getting Started Guide* and the *Administrator’s Guide*, provided electronically with the application.

Troubleshooting TFTP Downloads

When using the menu interface, if a TFTP download fails, the Download OS (Operating System, or software) screen indicates the failure.

```
ProCurve# copy tftp flash 10.29.227.103 /os/secondary secondary
Device will be rebooted, do you want to continue [y/n] Y
01084K
```

**Figure A-7. Switch-to-Switch, from Either Flash in Source to Either Flash in Destination**

**Figure A-8. Example of Message for Download Failure**

To find more information on the cause of a download failure, examine the messages in the switch’s Event Log by executing this CLI command:

```
ProCurve# show log tftp
```

(For more on the Event Log, see “Using the Event Log To Identify Problem Sources” on “Using the Event Log To Identify Problem Sources” on page C-26.)
Some of the causes of download failures include:

- Incorrect or unreachable address specified for the TFTP Server parameter. This may include network problems.
- Incorrect VLAN.
- Incorrect name specified for the Remote File Name parameter, or the specified file cannot be found on the TFTP server. This can also occur if the TFTP server is a UNIX machine and the case (upper or lower) for the filename on the server does not match the case for the filename entered for the Remote File Name parameter in the Download OS (Operating System, or software) screen.
- One or more of the switch’s IP configuration parameters are incorrect.
- For a UNIX TFTP server, the file permissions for the software file do not allow the file to be copied.
- Another console session (through either a direct connection to a terminal device or through Telnet) was already running when you started the session in which the download was attempted.

If an error occurs in which normal switch operation cannot be restored, the switch automatically reboots itself. In this case, an appropriate message is displayed after the switch reboots.

---

Transferring Switch Configurations and ACL Command Files

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use TFTP to copy from a remote host to a config file.</td>
<td>n/a</td>
<td>—</td>
<td>below</td>
<td>—</td>
</tr>
<tr>
<td>Use TFTP to copy a config file to a remote host.</td>
<td>n/a</td>
<td>—</td>
<td>page A-22</td>
<td>—</td>
</tr>
<tr>
<td>Use TFTP to upload and execute a command file for configuring or replacing an ACL in the switch configuration.</td>
<td>n/a</td>
<td>—</td>
<td>page A-23</td>
<td>—</td>
</tr>
<tr>
<td>Use Xmodem to copy a configuration from a serially connected host to a config file.</td>
<td>n/a</td>
<td>—</td>
<td>page A-25</td>
<td>—</td>
</tr>
<tr>
<td>Use Xmodem to copy a config file to a serially connected host.</td>
<td>n/a</td>
<td>—</td>
<td>page A-25</td>
<td>—</td>
</tr>
</tbody>
</table>
Using the CLI commands described in this section, you can copy switch configurations to and from a switch, or copy an ACL command file to configure or replace an ACL in the switch configuration.

**Note**

It is useful to note here that you can perform all TFTP operations using SFTP as described in the section on *Using Secure Copy and SFTP* on page A-8 for greater security, if needed.

### TFTP: Copying a Configuration from a Remote Host

**Syntax:**

```
copy tftp < startup-config | running-config > < ip-address > < remote-file >
                   [ pc | unix ]
copy tftp config < filename > < ip-address > < remote-file > [ pc | unix ]
```

*This command can copy a configuration from a remote host to a designated config file in the switch. For more on multiple configuration files, refer to “Multiple Configuration Files” on page 6-22. (Refer to “Using Primary and Secondary Flash Image Options” on page 6-13 for more on flash image use.)*

For example, to download a configuration file named **sw5400** in the **configs** directory on drive “d” in a remote host having an IP address of 10.28.227.105:

```
ProCurve# copy tftp startup-config 10.28.227.105 d:\configs\sw2512
```

### TFTP: Copying a Configuration File to a Remote Host

**Syntax:**

```
copy < startup-config | running-config > tftp < ip-addr > < remote-file > [ pc | unix ]
copy config < filename > tftp < ip-addr > < remote-file > [ pc | unix ]
```

*This command can copy a designated config file in the switch to a TFTP server. For more on multiple configuration files, refer to “Multiple Configuration Files” on page 6-22.*

For example, to upload the current startup configuration to a file named **sw5400** in the **configs** directory on drive “d” in a TFTP server having an IP address of 10.28.227.105:

```
ProCurve# copy startup-config tftp 10.28.227.105 d:\configs\sw5400
```
Transferring Switch Configurations and ACL Command Files

TFTP: Uploading an ACL Command File from a TFTP Server

This section describes how to upload and execute a command file to the switch for configuring or replacing an Access Control List (ACL) in the switch configuration. Such files should contain only ACE (Access Control Entry) commands. For an example of creating an ACL command file offline, refer to “Working Offline To Create or Edit an ACL” in the “Access Control Lists (ACLs)” chapter of the Advanced Traffic Management Guide for your switch.

**Syntax:** copy tftp command-file <ip-addr> <filename.txt> <unix | pc>

where:

- `<ip-addr>` = The IP address of a TFTP server available to the switch
- `<filename.txt>` = A text file containing ACL commands and stored in the TFTP directory of the server identified by `<ip-addr>`
- `<unix | pc>` = The type of workstation used for serial, Telnet, or SSH access to the switch CLI

This command copies and executes the named text file from the specified TFTP server address and executes the ACL commands in the file. Depending on the ACL commands used, this action does one of the following in the running-config file:

- Creates a new ACL.
- Replaces an existing ACL. (Refer to “Creating an ACL Offline” in the “Access Control Lists (ACLs)” chapter in the Advanced Traffic Management Guide for your switch.)
- Adds to an existing ACL.

For example, suppose you:

1. Created an ACL command file named `vlan10_in.txt` to update an existing ACL.
2. Copied the file to a TFTP server at 18.38.124.16.

Using a PC workstation, you then execute the following from the CLI to upload the file to the switch and implement the ACL commands it contains:

```
ProCurve(config)# copy tftp command-file 18.38.124.16 vlan10_in.txt pc
```

The switch displays this message:
File Transfers
Transferring Switch Configurations and ACL Command Files

Running configuration may change, do you want to continue [y/n]?

To continue with the upload, press the [Y] key. To abort the upload, press the [N] key. Note that if the switch detects an illegal (non-ACL) command in the file, it bypasses the illegal command, displays a notice as shown in figure A-9, and continues to implement the remaining ACL commands in the file.

```
ProCurve(config)# copy tftp command-file 10.38.124.16 vlan10_in.txt pc
Running configuration may change, do you want to continue [y/n]? y
1. ip access-list extended "155"
2. deny tcp 0.0.0.0 255.255.255.255 10.10.10.2 0.0.0.0 eq 23 log
3. permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
4. show running
Command files are limited to access-list commands.
5. exit
ProCurve(config)# show running

Running configuration:
; J8697A Configuration Editor; Created on Release #K.11.00
hostname "ProCurve"
cdp run
module 1 type J8702A
ip default-gateway 10.38.248.1
logging 18.38.227.2
snmp-server community "public" Unrestricted
ip access-list extended "155"
deny tcp 0.0.0.0 255.255.255.255 10.10.10.2 0.0.0.0 eq 23 log
permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
exit
```

Figure A-9. Example of Using the Copy Command to Download and Configure an ACL

For more on this general topic, including an example of an ACL command file created offline, refer to the section titled “Editing ACLs and Creating an ACL Offline” in the “Access Control Lists (ACLs)” chapter of the Advanced Traffic Management Guide for your switch.
Xmodem: Copying a Configuration File from the Switch to a Serially Connected PC or UNIX Workstation

To use this method, the switch must be connected via the serial port to a PC or UNIX workstation. You will need to:

- Determine a filename to use.
- Know the directory path you will use to store the configuration file.

**Syntax:**

```
copy < startup-config | running-config > xmodem < pc | unix >
copy config < filename > xmodem < pc | unix >
```

*Uses Xmodem to copy a designated configuration file from the switch to a PC or Unix workstation. For more on multiple configuration files, refer to “Multiple Configuration Files” on page 6-22.*

For example, to copy a configuration file to a PC serially connected to the switch:

1. Determine the file name and directory location on the PC.
2. Execute the following command:

   ```
   ProCurve# copy startup-config xmodem pc
   Press 'Enter' and start XMODEM on your host...
   ```

3. After you see the above prompt, press [Enter].
4. Execute the terminal emulator commands to begin the file transfer.

Xmodem: Copying a Configuration File from a Serially Connected PC or UNIX Workstation

To use this method, the switch must be connected via the serial port to a PC or UNIX workstation on which is stored the configuration file you want to copy. To complete the copying, you will need to know the name of the file to copy and the drive and directory location of the file.
Transferring Switch Configurations and ACL Command Files

**Syntax:** copy xmodem startup-config < pc | unix >
copy xmodem config < filename > < pc | unix >

Switches copy a configuration file from a serially connected PC or UNIX workstation to a designated configuration file on the switch. For more on multiple configuration files, refer to “Multiple Configuration Files” on page 6-22.

For example, to copy a configuration file from a PC serially connected to the switch:

1. Execute the following command:
   
   ProCurve# copy xmodem startup-config pc
   Device will be rebooted, do you want to continue [y/n]? y
   Press 'Enter' and start XMODEM on your host...

2. After you see the above prompt, press [Enter].

3. Execute the terminal emulator commands to begin the file transfer.

4. When the download finishes, you must reboot the switch to implement the newly downloaded software. To do so, use one of the following commands:

   **Syntax:** boot system flash [ primary | secondary ]
   boot system flash [ config < filename >]

   Switches boot from the designated configuration file. For more on multiple configuration files, refer to “Multiple Configuration Files” on page 6-22.

   **Syntax:** reload

   Reboots from the flash image currently in use.

   (For more on these commands, refer to “Rebooting the Switch” on page 6-18.)
Copying Diagnostic Data to a Remote Host, PC or UNIX Workstation

You can use the CLI to copy the following types of switch data to a text file in a management device:

- **Command Output**: Sends the output of a switch CLI command as a file on the destination device.
- **Event Log**: Copies the switch’s Event Log into a file on the destination device.
- **Crash Data**: Software-specific data useful for determining the reason for a system crash.
- **Crash Log**: Processor-Specific operating data useful for determining the reason for a system crash.

### Copying Command Output to a Destination Device

**Syntax:**

```
copy command-output "cli-command" > tftp <ip-address> <filepath-filename>
copy command-output "cli-command" > xmodem
```

*These commands direct the displayed output of a CLI command to a file on a destination device*

For example, to use Xmodem to copy the output of `show config` to a serially connected PC:

```
ProCurve#copy command-output "show config" xmodem pc
Press 'Enter' and start XMODEM on your host...
Transfer complete
```

*Figure A-10. Example of Sending Command Output to a File on an Attached PC*

Note that the command you specify must be enclosed in double-quote marks.
Copy Event Log Output to a Destination Device

**Syntax:** copy event-log tftp <ip-address> <filepath_filename>

```
copy event-log xmodem <filename>
```

*These commands use TFTP or Xmodem to copy the Event Log content to a PC or UNIX workstation on the network.*

For example, to copy the event log to a PC connected to the switch:

```
Press ‘Enter’ and start XMODEM on your host...
Transfer complete
```

**Copy Crash Data Content to a Destination Device**

This command uses TFTP or Xmodem to copy the Crash Data content to a PC or UNIX workstation on the network. You can copy individual slot information or the master switch information. If you do not specify either, the command defaults to the master data.

**Syntax:**

```
copy crash-data [<slot-id | master>] xmodem
copy crash-data [<slot-id | master>] tftp <ip-address> <filename>
```

*where: slot-id = a - h, and retrieves the crash log or crash data from the processor on the module in the specified slot.*

*master* Retrieves crash log or crash data from the switch’s chassis processor.

*These commands use TFTP or Xmodem to copy the Event Log content to a PC or UNIX workstation on the network.*

For example, to copy the switch’s crash data to a file in a PC:
File Transfers
Copying Diagnostic Data to a Remote Host, PC or UNIX Workstation

Copying Crash Log Data Content to a Destination Device

**Syntax:**
```
copy crash-log [<slot-id | master>] tftp <ip-address> <filepath and filename>
copy crash-log [<slot-id | master>] xmodem
```

*where: slot-id = a-h, and retrieves the crash log or crash data from the processor on the module in the specified slot.*

*master* Retrieves crash log or crash data from the switch’s chassis processor.

*These commands use TFTP or Xmodem to copy the Crash Log content to a PC or UNIX workstation on the network. You can copy individual slot information or the master switch information. If you do not specify either, the command defaults to the master data.*

For example, to copy the Crash Log for slot C to a file in a PC connected to the switch:

```
ProCurve(config)# copy crash-log c xmodem
Press 'Enter' and start XMODEM on your host...
Transfer complete
```

Figure A-12. Example of Copying Switch Crash Data Content to a PC

Figure A-13. Example of sending a Crash Log for Slot C to a File on an Attached PC
Monitoring and Analyzing Switch Operation

Contents

Overview .......................................................... B-3

Status and Counters Data ........................................ B-4
  Menu Access To Status and Counters ......................... B-5
  General System Information ................................ B-6
    Menu Access ................................................. B-6
    CLI Access ................................................ B-6
  Switch Management Address Information ..................... B-7
    Menu Access ................................................. B-7
    CLI Access ................................................ B-7

Module Information ............................................. B-8
  Menu: Displaying Port Status ................................ B-8
  CLI Access ................................................ B-9

Port Status ..................................................... B-10
  Menu: Displaying Port Status ................................ B-10
  CLI Access ................................................ B-10
  Web Access ................................................ B-10

Viewing Port and Trunk Group Statistics and Flow Control Status B-11
  Menu Access to Port and Trunk Statistics ................... B-12
  CLI Access To Port and Trunk Group Statistics ............. B-13
  Web Browser Access To View Port and Trunk Group Statistics B-13

Viewing the Switch’s MAC Address Tables ..................... B-13
  Menu Access to the MAC Address Views and Searches ...... B-14
  CLI Access for MAC Address Views and Searches .......... B-17

Spanning Tree Protocol (MSTP) Information ..................... B-18
  CLI Access to MSTP Data .................................... B-18

Internet Group Management Protocol (IGMP) Status ............. B-19

VLAN Information ............................................... B-20
Web Browser Interface Status Information ......................... B-22

**Interface Monitoring Features** ................................. B-23

  Menu: Configuring Port and Static Trunk Monitoring ........... B-24
  CLI: Configuring Port, Mesh, and Static Trunk Monitoring .... B-26
  Web: Configuring Port Monitoring .............................. B-29
Overview

The switches covered in this guide have several built-in tools for monitoring, analyzing, and troubleshooting switch and network operation:

- **Status**: Includes options for displaying general switch information, management address data, port status, port and trunk group statistics, MAC addresses detected on each port or VLAN, and STP, IGMP, and VLAN data (page B-4).

- **Counters**: Display details of traffic volume on individual ports (page B-11).

- **Event Log**: Lists switch operating events (“Using the Event Log To Identify Problem Sources” on page C-26).

- **Alert Log**: Lists network occurrences detected by the switch—in the Status | Overview screen of the web browser interface (page 5-16).

- **Configurable trap receivers**: Uses SNMP to enable management stations on your network to receive SNMP traps from the switch. (Refer to “SNMPv1 and SNMPv2c Trap Features” on page 14-19.)

- **Port monitoring (mirroring)**: Copy all traffic from the specified ports to a designated monitoring port (page B-23).

**Note**

Link test and ping test—analysis tools in troubleshooting situations—are described in appendix C, “Troubleshooting”. Refer to “Diagnostic Tools” on page C-44.
This section describes the status and counters screens available through the switch console interface and/or the web browser interface.

**Note** You can access all console screens from the web browser interface via Telnet to the console. Telnet access to the switch is available in the Device View window under the **Configuration** tab.

<table>
<thead>
<tr>
<th>Status or Counters Type</th>
<th>Interface</th>
<th>Purpose</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu Access to Status and Counters</td>
<td>Menu</td>
<td>Access menu interface for status and counter data.</td>
<td>B-5</td>
</tr>
<tr>
<td>General System Information</td>
<td>Menu, CLI</td>
<td>Lists switch-level operating information.</td>
<td>B-6</td>
</tr>
<tr>
<td>Management Address Information</td>
<td>Menu, CLI</td>
<td>Lists the MAC address, IP address, and IPX network number for each VLAN or, if no VLANs are configured, for the switch.</td>
<td>B-7</td>
</tr>
<tr>
<td>Module Information</td>
<td>Menu, CLI</td>
<td>Lists the module type and description for each slot in which a module is installed.</td>
<td>B-8</td>
</tr>
<tr>
<td>Port Status</td>
<td>Menu, CLI, Web</td>
<td>Displays the operational status of each port.</td>
<td>B-10</td>
</tr>
<tr>
<td>Port and Trunk Statistics and Flow Control Status</td>
<td>Menu, CLI, Web</td>
<td>Summarizes port activity and lists per-port flow control status.</td>
<td>B-11</td>
</tr>
<tr>
<td>VLAN Address Table</td>
<td>Menu, CLI</td>
<td>Lists the MAC addresses of nodes the switch has detected on specific VLANs, with the corresponding switch port.</td>
<td>B-14</td>
</tr>
<tr>
<td>Port Address Table</td>
<td>Menu, CLI</td>
<td>Lists the MAC addresses that the switch has learned from the selected port.</td>
<td>B-14</td>
</tr>
<tr>
<td>STP Information</td>
<td>Menu, CLI</td>
<td>Lists Spanning Tree Protocol data for the switch and for individual ports. If VLANs are configured, reports on a per-VLAN basis.</td>
<td>B-18</td>
</tr>
<tr>
<td>IGMP Status</td>
<td>Menu, CLI</td>
<td>Lists IGMP groups, reports, queries, and port on which querier is located.</td>
<td>B-19</td>
</tr>
<tr>
<td>VLAN Information</td>
<td>Menu, CLI</td>
<td>For each VLAN configured in the switch, lists 802.1Q VLAN ID and up/down status.</td>
<td>B-20</td>
</tr>
<tr>
<td>Port Status Overview and Port Counters</td>
<td>Web</td>
<td>Shows port utilization and counters, and the Alert Log.</td>
<td>B-22</td>
</tr>
</tbody>
</table>
Menu Access To Status and Counters

Beginning at the Main Menu, display the Status and Counters menu by selecting:

1. Status and Counters

![Status and Counters Menu]

Each of the above menu items accesses the read-only screens described on the following pages. Refer to the online help for a description of the entries displayed in these screens.

**Figure B-1. The Status and Counters Menu**

Each of the above menu items accesses the read-only screens described on the following pages. Refer to the online help for a description of the entries displayed in these screens.
General System Information

Menu Access

From the console Main Menu, select:

1. Status and Counters
   1. General System Information

![Figure B-2. Example of General Switch Information](image)

This screen dynamically indicates how individual switch resources are being used. Refer to the online Help for details.

CLI Access

**Syntax:** show system-information
Switch Management Address Information

Menu Access

From the Main Menu, select:

1 Status and Counters …

2. Switch Management Address Information

---

**Figure B-3. Example of Management Address Information with VLANs Configured**

This screen displays addresses that are important for management of the switch. If multiple VLANs are *not* configured, this screen displays a single IP address for the entire switch. Refer to the online Help for details.

---

**Note**

As shown in figure B-3, all VLANs on the switches use the same MAC address. (This includes both the statically configured VLANs and any dynamic VLANs existing on the switch as a result of GVRP operation.)

Also, the switches covered in this guide use a multiple forwarding database. When using multiple VLANs and connecting a switch to a device that uses a single forwarding database, such as a Switch 4000M, there are cabling and tagged port VLAN requirements. For more on this topic, refer to the section titled “Multiple VLAN Considerations” in the “Static Virtual LANs (VLANs)” chapter of the *Advanced Traffic Management Guide* for your switch.

---

**CLI Access**

**Syntax:** show management
Module Information

Use this feature to determine which slots have modules installed and which type(s) of modules are installed.

Menu: Displaying Port Status

From the Main Menu, select:

1. Status and Counters …
   3. Module Information

Figure B-4. Example of Module Information in the Menu Interface
CLI Access

*Syntax:* show modules

```
ProCurve(config)# show modules

Status and Counters - Module Information

Management Module: J8627A      Serial Number: SG111SZ234

Slot  Module Description                       Serial Number
----- ---------------------------------------- ------------
--
A     ProCurve J8702A XL 24 port Gig-T POE     SG111SZ345
B     ProCurve J8705A XL 20 port + 4 mGBIC     SG111SX466
C     ProCurve J8702A XL 24 port Gig-T POE     SG123DX543
```

*Figure B-5. Example of Module Information including the Management Module*
Port Status

The web browser interface and the console interface show the same port status data.

Menu: Displaying Port Status

From the Main Menu, select:

1. Status and Counters …
   4. Port Status

![Example of Port Status on the Menu Interface](image)

**Figure B-6. Example of Port Status on the Menu Interface**

**CLI Access**

**Syntax:** show interfaces brief

**Web Access**

1. Click on the **Status** tab.
2. Click on [Port Status].
Monitoring and Analyzing Switch Operation

Status and Counters Data

Viewing Port and Trunk Group Statistics and Flow Control Status

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>viewing port and trunk statistics for all ports, and flow control status</td>
<td>n/a</td>
<td>page B-12</td>
<td>page B-13</td>
<td>page B-13</td>
</tr>
<tr>
<td>viewing a detailed summary for a particular port or trunk</td>
<td>n/a</td>
<td>page B-12</td>
<td>page B-13</td>
<td>page B-13</td>
</tr>
<tr>
<td>resetting counters</td>
<td>n/a</td>
<td>page B-12</td>
<td>page B-13</td>
<td>page B-13</td>
</tr>
</tbody>
</table>

These features enable you to determine the traffic patterns for each port since the last reboot or reset of the switch. You can display:

- A general report of traffic on all LAN ports and trunk groups in the switch, along with the per-port flow control status (On or Off).
- A detailed summary of traffic on a selected port or trunk group.

You can also reset the counters for a specific port.

The menu interface and the web browser interface provide a dynamic display of counters summarizing the traffic on each port. The CLI lets you see a static “snapshot” of port or trunk group statistics at a particular moment.

As mentioned above, rebooting or resetting the switch resets the counters to zero. You can also reset the counters to zero for the current session. This is useful for troubleshooting. Refer to the “Note On Reset”, below.

**Note on Reset**

The Reset action resets the counter display to zero for the current session, but does not affect the cumulative values in the actual hardware counters. (In compliance with the SNMP standard, the values in the hardware counters are not reset to zero unless you reboot the switch.) Thus, using the Reset action resets the displayed counters to zero for the current session only. Exiting from the console session and starting a new session restores the counter displays to the accumulated values in the hardware counters.
Menu Access to Port and Trunk Statistics

To access this screen from the Main Menu, select:

1. Status and Counters …

4. Port Counters

---

<table>
<thead>
<tr>
<th>Port</th>
<th>Total Bytes</th>
<th>Total Frames</th>
<th>Errors Rx</th>
<th>Drops Tx</th>
<th>Flow Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>125,072</td>
<td>223</td>
<td>0</td>
<td>0</td>
<td>off</td>
</tr>
<tr>
<td>A2</td>
<td>631,816</td>
<td>971</td>
<td>0</td>
<td>0</td>
<td>off</td>
</tr>
<tr>
<td>A3-Trk1</td>
<td>390,383</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>off</td>
</tr>
<tr>
<td>A4-Trk1</td>
<td>260,134</td>
<td>501</td>
<td>0</td>
<td>0</td>
<td>off</td>
</tr>
<tr>
<td>C1</td>
<td>659,360</td>
<td>1,297</td>
<td>0</td>
<td>0</td>
<td>off</td>
</tr>
<tr>
<td>C2</td>
<td>670,504</td>
<td>1,685</td>
<td>0</td>
<td>0</td>
<td>off</td>
</tr>
<tr>
<td>C3</td>
<td>25,984</td>
<td>286</td>
<td>0</td>
<td>0</td>
<td>off</td>
</tr>
<tr>
<td>C4</td>
<td>113,164</td>
<td>276</td>
<td>0</td>
<td>0</td>
<td>off</td>
</tr>
<tr>
<td>C5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>off</td>
</tr>
</tbody>
</table>

Actions: Back Show details Reset Help

Figure B-7. Example of Port Counters on the Menu Interface

To view details about the traffic on a particular port, use the key to highlight that port number, then select Show Details. For example, selecting port A2 displays a screen similar to figure B-8, below.

---

<table>
<thead>
<tr>
<th>Link Status</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes Rx</td>
<td>630,786</td>
<td>Bytes Tx</td>
<td>21,079</td>
<td></td>
</tr>
<tr>
<td>Unicast Rx</td>
<td>565</td>
<td>Unicast Tx</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Broadcast Rx</td>
<td>18</td>
<td>Broadcast/Tx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FCS Rx</td>
<td>0</td>
<td>Drops Tx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Alignment Rx</td>
<td>0</td>
<td>Collisions Tx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Runts Rx</td>
<td>0</td>
<td>Late Collin Tx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Giants Rx</td>
<td>0</td>
<td>Excessive Colln</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Rx Errors</td>
<td>0</td>
<td>Deferred Tx</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Actions: Back Reset Help

Return to previous screen.

Use arrow keys to change action selection and (<Enter> to execute action.

Figure B-8. Example of the Display for Show details on a Selected Port

This screen also includes the Reset action for the current session. (Refer to the “Note on Reset” on page B-11.)
CLI Access To Port and Trunk Group Statistics

To Display the Port Counter Summary Report.

**Syntax:** show interfaces

_This command provides an overview of port activity for all ports on the switch._

To Display a Detailed Traffic Summary for Specific Ports.

**Syntax:** show interfaces < port-list >

_This command provides traffic details for the port(s) you specify_

To Reset the Port Counters for a Specific Port.

**Syntax:** clear statistics < port-list >

_This command resets the counters for the specified ports to zero for the current session. (See the “Note on Reset” on page B-11.)_

Web Browser Access To View Port and Trunk Group Statistics

1. Click on the **Status** tab.
2. Click on **[Port Counters]**.
3. To refresh the counters for a specific port, click anywhere in the row for that port, then click on **[Refresh]**.

**Note**

To reset the port counters to zero, you must reboot the switch.
Viewing the Switch’s MAC Address Tables

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>viewing MAC addresses on all ports on a specific VLAN</td>
<td>n/a</td>
<td>page B-14</td>
<td>page B-17</td>
<td>—</td>
</tr>
<tr>
<td>viewing MAC addresses on a specific port</td>
<td>n/a</td>
<td>page B-16</td>
<td>page B-17</td>
<td>—</td>
</tr>
<tr>
<td>searching for a MAC address</td>
<td>n/a</td>
<td>page B-16</td>
<td>page B-17</td>
<td>—</td>
</tr>
</tbody>
</table>

These features help you to view:

- The MAC addresses that the switch has learned from network devices attached to the switch
- The port on which each MAC address was learned

Menu Access to the MAC Address Views and Searches

**Per-VLAN MAC-Address Viewing and Searching.** This feature lets you determine which switch port on a selected VLAN is being used to communicate with a specific device on the network. The per-VLAN listing includes:

- The MAC addresses that the switch has learned from network devices attached to the switch
- The port on which each MAC address was learned

1. From the Main Menu, select:
   
   **1. Status and Counters**
   
   **5. VLAN Address Table**

2. The switch then prompts you to select a VLAN.

3. Use the Space bar to select the VLAN you want, then press [Enter]. The switch then displays the MAC address table for that VLAN:
Monitoring and Analyzing Switch Operation
Status and Counters Data

Figure B-9. Example of the Address Table

To page through the listing, use Next page and Prev page.

Finding the Port Connection for a Specific Device on a VLAN. This feature uses a device's MAC address that you enter to identify the port used by that device.

1. Proceeding from figure B-9, press [S] (for Search), to display the following prompt:

   Enter MAC address: _

2. Type the MAC address you want to locate and press [Enter]. The address and port number are highlighted if found. If the switch does not find the MAC address on the currently selected VLAN, it leaves the MAC address listing empty.

Figure B-10. Example of Menu Indicating Located MAC Address

3. Press [P] (for Prev page) to return to the full address table listing.
Port-Level MAC Address Viewing and Searching. This feature displays and searches for MAC addresses on the specified port instead of for all ports on the switch.

1. From the Main Menu, select:
   1. Status and Counters
   7. Port Address Table

   ![Stacking is supported on the 3500yl and 6200yl switches.]

   ![Prompt for Selecting the Port To Search]

   **Figure B-11. Listing MAC Addresses for a Specific Port**

2. Use the Space bar to select the port you want to list or search for MAC addresses, then press [Enter] to list the MAC addresses detected on that port.

Determining Whether a Specific Device Is Connected to the Selected Port. Proceeding from step 2, above:

1. Press [S] (for Search), to display the following prompt:
   
   Enter MAC address: _

2. Type the MAC address you want to locate and press [Enter]. The address is highlighted if found. If the switch does not find the address, it leaves the MAC address listing empty.

3. Press [P] (for Prev page) to return to the previous per-port listing.
Monitor and Analyze Switch Operation

Status and Counters Data

CLI Access for MAC Address Views and Searches

**Syntax:**

```
show mac-address
[ vlan <vlan-id> ]
[ <port-list> ]
[ <mac-addr> ]
```

**To List All Learned MAC Addresses on the Switch, with The Port Number on Which Each MAC Address Was Learned.**

```
ProCurve> show mac-address
```

**To List All Learned MAC Addresses on one or more ports, with Their Corresponding Port Numbers.** For example, to list the learned MAC address on ports A1 through A4 and port A6:

```
ProCurve> show mac-address a1-a4,a6
```

**To List All Learned MAC Addresses on a VLAN, with Their Port Numbers.** This command lists the MAC addresses associated with the ports for a given VLAN. For example:

```
ProCurve> show mac-address vlan 100
```

---

**Note**

The switches covered in this guide operate with a multiple forwarding database architecture.

**To Find the Port On Which the Switch Learned a Specific MAC Address.** For example, to find the port on which the switch learns a MAC address of 080009-21ae84:

```
ProCurve# show mac-address 080009-21ae84
Status and Counters - Address Table - 080009-21ae84
  MAC Address : 080009-21ae84
  Located on Port : A2
```
Spanning Tree Protocol (MSTP) Information

CLI Access to MSTP Data

This option lists the MSTP configuration, root data, and per-port data (cost, priority, state, and designated bridge).

**Syntax:** show spanning-tree

This command displays the switch’s global and regional spanning-tree status, plus the per-port spanning-tree operation at the regional level. Note that values for the following parameters appear only for ports connected to active devices: Designated Bridge, Hello Time, PtP, and Edge.

```
Switch-l(config)# show spanning-tree
Multiple Spanning Tree (MST) Information

STP Enabled   : Yes
Force Version : MSTP-operation
IST Mapped VLANs : 1.66

Switch MAC Address : 0004e5-5e2000
Switch Priority : 32768
Max Age : 20
Max Hops : 20
Forward Delay : 15

Topology Change Count : 0
Time Since Last Change : 2 hours

CST Root MAC Address : 00022d-47367f
CST Root Priority : 0
CST Root Path Cost : 0
CST Root Port : A1

IST Regional Root MAC Address : 000893-028300
IST Regional Root Priority : 32768
IST Regional Root Path Cost : 200000
IST Remaining Hops : 19

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Cost</th>
<th>Priority</th>
<th>State</th>
<th>Designated Bridge</th>
<th>Hello Time</th>
<th>PtP</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10/100TX</td>
<td>Auto</td>
<td>128</td>
<td>Forwarding</td>
<td>000893-028300</td>
<td>9</td>
<td>Yes</td>
</tr>
<tr>
<td>A2</td>
<td>10/100TX</td>
<td>Auto</td>
<td>128</td>
<td>Blocking</td>
<td>0001e7-948300</td>
<td>9</td>
<td>Yes</td>
</tr>
<tr>
<td>A3</td>
<td>10/100TX</td>
<td>Auto</td>
<td>129</td>
<td>Forwarding</td>
<td>000893-02e700</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>A4</td>
<td>10/100TX</td>
<td>Auto</td>
<td>129</td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>10/100TX</td>
<td>Auto</td>
<td>129</td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B-12. Output from show spanning-tree Command
Internet Group Management Protocol (IGMP) Status

The switch uses the CLI to display the following IGMP status on a per-VLAN basis:

<table>
<thead>
<tr>
<th>Show Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp</td>
<td>Global command listing IGMP status for all VLANs configured in the switch:</td>
</tr>
<tr>
<td></td>
<td>• VLAN ID (VID) and name</td>
</tr>
<tr>
<td></td>
<td>• Active group addresses per VLAN</td>
</tr>
<tr>
<td></td>
<td>• Number of report and query packets per group</td>
</tr>
<tr>
<td></td>
<td>• Querier access port per VLAN</td>
</tr>
<tr>
<td>show ip igmp &lt;vlan-id&gt;</td>
<td>Per-VLAN command listing above IGMP status for specified VLAN (VID)</td>
</tr>
<tr>
<td>show ip igmp group &lt;ip-addr&gt;</td>
<td>Lists the ports currently participating in the specified group, with port type, Access type, Age Timer data and Leave Timer data.</td>
</tr>
</tbody>
</table>

For example, suppose that `show ip igmp` listed an IGMP group address of 224.0.1.22. You could get additional data on that group by executing the following:

```
ProCurve> show ip igmp group 224.0.1.22

IGMP ports for group 224.0.1.22

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Access</th>
<th>Age Timer</th>
<th>Leave Timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10/100TX host</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

*Figure B-13. Example of IGMP Group Data*
VLAN Information

The switch uses the CLI to display the following VLAN status:

<table>
<thead>
<tr>
<th>Show Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vlan</td>
<td>Lists:</td>
</tr>
<tr>
<td></td>
<td>• Maximum number of VLANs to support</td>
</tr>
<tr>
<td></td>
<td>• Existing VLANs</td>
</tr>
<tr>
<td></td>
<td>• Status (static or dynamic)</td>
</tr>
<tr>
<td></td>
<td>• Primary VLAN</td>
</tr>
<tr>
<td>show vlan &lt;vlan-id&gt;</td>
<td>For the specified VLAN, lists:</td>
</tr>
<tr>
<td></td>
<td>• Name, VID, and status (static/dynamic)</td>
</tr>
<tr>
<td></td>
<td>• Per-Port mode (tagged, untagged, forbid, no/auto)</td>
</tr>
<tr>
<td></td>
<td>• “Unknown VLAN” setting (Learn, Block, Disable)</td>
</tr>
<tr>
<td></td>
<td>• Port status (up/down)</td>
</tr>
</tbody>
</table>

For example, suppose that your switch has the following VLANs:

<table>
<thead>
<tr>
<th>Ports</th>
<th>VLAN</th>
<th>VID</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 - A12</td>
<td>DEFAULT_VLAN</td>
<td>1</td>
</tr>
<tr>
<td>A1, A2</td>
<td>VLAN-33</td>
<td>33</td>
</tr>
<tr>
<td>A3, A4</td>
<td>VLAN-44</td>
<td>44</td>
</tr>
</tbody>
</table>

The next three figures show how you could list data on the above VLANs.

Listing the VLAN ID (VID) and Status for ALL VLANs in the Switch.

```
ProCurve> show vlan
Status and Counters - VLAN Information
VLAN support : Yes
Maximum VLANs to support : 9
Primary VLAN: DEFAULT_VLAN

802.1Q VLAN ID  Name       Status
------------------ -----------
1                 DEFAULT_VLAN Static
33                VLAN-33     Static
44                VLAN-44     Static
```

Figure B-14. Example of VLAN Listing for the Entire Switch
Listing the VLAN ID (VID) and Status for Specific Ports.

```
ProCurve> show vlan ports A1-A2
Status and Counters - VLAN Information - for ports A1,A2
802.1Q VLAN ID Name Status
----------------- --------
 1     DEFAULT_VLAN Static
 33     VLAN-33   Static
```

Figure B-15. Example of VLAN Listing for Specific Ports

Listing Individual VLAN Status.

```
ProCurve> show vlan 1
Status and Counters - VLAN Information - Ports - VLAN 1
802.1Q VLAN ID : 1
Name : DEFAULT_VLAN
Status : Static

<table>
<thead>
<tr>
<th>Port</th>
<th>Information</th>
<th>Mode</th>
<th>Unknown VLAN</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Untagged</td>
<td>Learn</td>
<td></td>
<td>Up</td>
</tr>
<tr>
<td>A2</td>
<td>Tagged</td>
<td>Learn</td>
<td></td>
<td>Up</td>
</tr>
<tr>
<td>A3</td>
<td>Untagged</td>
<td>Learn</td>
<td></td>
<td>Up</td>
</tr>
<tr>
<td>A4</td>
<td>Untagged</td>
<td>Learn</td>
<td></td>
<td>Down</td>
</tr>
<tr>
<td>A5</td>
<td>Untagged</td>
<td>Learn</td>
<td></td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure B-16. Example of Port Listing for an Individual VLAN
Web Browser Interface Status Information

The “home” screen for the web browser interface is the Status Overview screen, as shown below. As the title implies, it provides an overview of the status of the switch, including summary graphs indicating the network utilization on each of the switch ports, symbolic port status indicators, and the Alert Log, which informs you of any problems that may have occurred on the switch.

For more information on this screen, refer to chapter 5, “Using the ProCurve Web Browser Interface”.

Figure B-17. Example of a Web Browser Interface Status Overview Screen
Interface Monitoring Features

Port Monitoring Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>display monitoring</td>
<td>disabled</td>
<td>page B-24</td>
<td>page B-26</td>
<td>page B-29</td>
</tr>
<tr>
<td>configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>configure the monitor port(s)</td>
<td>ports: none</td>
<td>page B-24</td>
<td>page B-27</td>
<td>page B-29</td>
</tr>
<tr>
<td>selecting or removing ports</td>
<td>none selected</td>
<td>page B-24</td>
<td>page B-28</td>
<td>page B-29</td>
</tr>
</tbody>
</table>

You can designate monitoring of inbound and outbound traffic on:

- **Ports and static trunks**: Allows monitoring of individual ports, groups of contiguous ports, and static port trunks.
- **Meshed ports**: Allows traffic monitoring on all ports configured for meshing on the switch.
- **Static VLANs**: Allows traffic monitoring on one static VLAN.

The switch monitors network activity by copying all traffic inbound and outbound on the specified interfaces to the designated monitoring port, to which a network analyzer can be attached.

If a tagged packet arrives on a monitored port, the packet will remain tagged when it goes out a monitored port even if that port is configured as untagged. If the packet is untagged, it will remain untagged going out the monitor port. The monitor port state (tagged or untagged) does not affect the tagging of the packet. However, egress mirroring does not reflect the tagged or untagged characteristic to the mirror port, instead it reflects the tagged or untagged characteristic of the mirror port.

**Note**

When both inbound and outbound monitoring is done, and IGMP is enabled on any VLAN, you may get two copies of IGMP packets on the monitored port.

**Note**

VLANs, a switch mesh, and port trunks cannot be used as a monitoring port.

The switch can monitor static LACP trunks, but not dynamic LACP trunks.

It is possible, when monitoring multiple interfaces in networks with high traffic levels, to copy more traffic to a monitor port than the link can support. In this case, some packets may not be copied to the monitor port.
Menu: Configuring Port and Static Trunk Monitoring

This procedure describes configuring the switch for monitoring when monitoring is disabled. (If monitoring has already been enabled, the screens will appear differently than shown in this procedure.)

1. From the Console Main Menu, Select:
   2. Switch Configuration...
   3. Network Monitoring Port

![Figure B-18. The Default Network Monitoring Configuration Screen]

2. In the Actions menu, press [E] (for Edit).

3. If monitoring is currently disabled (the default) then enable it by pressing the Space bar (or [Y]) to select Yes.

4. Press the down arrow key to display a screen similar to the following and move the cursor to the Monitoring Port parameter.
5. Use the Space bar to select the port to use for monitoring.

6. Highlight the Monitor field and use the Space bar to select the interfaces to monitor:

- **Ports**: Use for monitoring ports, static trunks, or the mesh.
- **VLAN**: Use for monitoring a VLAN.

7. Do one of the following:
   - If you are monitoring ports, static trunks, or the mesh, go to step 8.
   - If you are monitoring a VLAN:
     i. Press [Tab] or the down arrow key to move to the VLAN field.

![ProCurve](image)
ii. Use the Space bar to select the VLAN you want to monitor.
iii. Go to step 10.

8. Use the down arrow key to move the cursor to the Action column for the individual ports and position the cursor at a port you want to monitor.

9. Press the Space bar to select Monitor for each port and trunk that you want monitored. (Use the down arrow key to move from one interface to the next in the Action column.)

10. When you finish selecting ports to monitor, press [Enter], then press [S] (for Save) to save your changes and exit from the screen.

11. Return to the Main Menu.

CLI: Configuring Port, Mesh, and Static Trunk Monitoring

**Port, Mesh, and Static Trunk Monitoring Commands Used in This Section**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show monitor</td>
<td>Below page B-27</td>
</tr>
<tr>
<td>mirror-port</td>
<td>Page B-27</td>
</tr>
<tr>
<td>monitor</td>
<td>Page B-28</td>
</tr>
</tbody>
</table>

You must use the following configuration sequence to configure port and static trunk monitoring in the CLI:

1. Assign a monitoring (mirror) port.
2. Designate the port(s), mesh, and/or static trunk(s) to monitor.

**Displaying the Monitoring Configuration.**

**Syntax:** show monitor

_This command lists the port assigned to receive monitored traffic and the ports and/or trunks being monitored._

For example, if you assign port A6 as the monitoring port and configure the switch to monitor ports A1 - A3, *show monitor* displays the following:
Configuring the Monitor Port.

**Syntax:** 

```
[no] mirror-port [<port-num>]
```

This command assigns or removes a monitoring port, and must be executed from the global configuration level. Removing the monitor port disables port monitoring and resets the monitoring parameters to their factory-default settings.

For example, to assign port A6 as the monitoring port:

```
ProCurve(config)# mirror-port a6
```

To turn off monitoring:

```
ProCurve(config)# no mirror-port
```
Selecting or Removing Monitoring Source Interfaces. After you configure a monitor port you can use either the global configuration level or the interface context level to select ports, static trunks, meshed ports or VLANs as monitoring sources. You can also use either level to remove monitoring sources.

Syntax:  
[no] interface < monitor-list > monitor  
[no] vlan < vid > monitor

Where:

< monitor-list > Includes port numbers, static trunk names, and meshing, such as a4, c7, b5-b8, trk1, and mesh.

< vid > Allows monitoring of one VLAN.

Identifies the switch elements to monitor through the currently configured monitor port. You can monitor the port(s), static trunk(s), and any switch mesh available on the switch or one VLAN.

Note

Individual ports, static trunks, and meshing can all be monitored at the same time. However, if you configure the switch to monitor a VLAN, all other interfaces are removed from monitoring. Also, you can configure only one VLAN at a time for monitoring.

Elements in the monitor list can include port numbers, static trunk names, and the mesh at the same time.

For example, with a port such as port A6 configured as the monitoring (mirror) port, you would use either of the following commands to select these interfaces for monitoring:

- A1 through A3, and A5
- Trunks 1 and 2
- Meshing

Figure B-21. Examples of Selecting Ports and Static Trunks as Monitoring Sources

To monitor a VLAN:
Web: Configuring Port Monitoring

To enable port monitoring:

1. Click on the **Configuration** tab.
2. Click on **[Monitor Port]**.
3. To monitor one or more ports.
   a. Click on the radio button for **Monitor Selected Ports**.
   b. Select the port(s) to monitor.
4. Click on **[Apply Changes]**.

To remove port monitoring:

1. Click on the **[Monitoring Off]** radio button.
2. Click on **[Apply Changes]**.

For web-based Help on how to use the web browser interface screen, click on the [?] button provided on the web browser screen.
Troubleshooting

Contents

Overview ................................................................. C-3
Troubleshooting Approaches ........................................ C-4
Browser or Telnet Access Problems .............................. C-5
Unusual Network Activity ............................................ C-7
  General Problems ....................................................... C-7
  802.1Q Prioritization Problems .................................... C-8
  ACL Problems ........................................................ C-8
  IGMP-Related Problems ............................................. C-13
  LACP-Related Problems ............................................ C-13
  Mesh-Related Problems ............................................. C-14
  Port-Based Access Control (802.1X)-Related Problems .... C-14
  QoS-Related Problems .............................................. C-17
  Radius-Related Problems ............................................ C-17
  Spanning-Tree Protocol (MSTP) and Fast-Uplink Problems . C-18
  SSH-Related Problems .............................................. C-19
  TACACS-Related Problems .......................................... C-21
  TimeP, SNTP, or Gateway Problems ............................. C-23
  VLAN-Related Problems ........................................... C-23

Using the Event Log To Identify Problem Sources ............. C-26
  Menu: Entering and Navigating in the Event Log ............. C-28
  CLI: Listing Events ................................................. C-29
  CLI: Turn Event Numbering On ................................... C-29
  Reducing Duplicate Event Log and SNMP Trap Messages .... C-30
# Troubleshooting

## Contents

### Debug and Syslog Messaging Operation
- Debug Command Operation ........................................... C-34
- Debug Types ............................................................. C-35
- Debug Destinations .................................................... C-37
- Syslog Operation ....................................................... C-38
- Viewing the Debug Configuration ................................... C-39
- Steps for Configuring Debug and Syslog Messaging .......... C-39
- Operating Notes for Debug and Syslog .......................... C-43

### Diagnostic Tools
- Port Auto-Negotiation ............................................... C-44
- Ping and Link Tests ................................................... C-45
  - Web: Executing Ping or Link Tests ............................. C-46
  - CLI: Ping or Link Tests ........................................... C-47
- Displaying the Configuration File ............................... C-49
  - CLI: Viewing the Configuration File ........................... C-49
  - Web: Viewing the Configuration File .......................... C-49
- Listing Switch Configuration and Operation Details .......... C-49
- CLI Administrative and Troubleshooting Commands .......... C-51
- Traceroute Command ................................................ C-52

### Restoring the Factory-Default Configuration
- CLI: Resetting to the Factory-Default Configuration ....... C-55
- Clear/Reset: Resetting to the Factory-Default Configuration C-55

### Restoring a Flash Image ........................................... C-56
Overview

This appendix addresses performance-related network problems that can be caused by topology, switch configuration, and the effects of other devices or their configurations on switch operation. (For switch-specific information on hardware problems indicated by LED behavior, cabling requirements, and other potential hardware-related problems, refer to the installation guide you received with the switch.)

Note

ProCurve periodically places switch software updates on the ProCurve Networking web site. ProCurve recommends that you check this web site for software updates that may have fixed a problem you are experiencing.

For information on support and warranty provisions, refer to the Support and Warranty booklet shipped with the switch.
Troubleshooting Approaches

Use these approaches to diagnose switch problems:

■ Check the ProCurve Networking web site for software updates that may have solved your problem: [www.procurve.com](http://www.procurve.com)

■ Check the switch LEDs for indications of proper switch operation:
  • Each switch port has a Link LED that should light whenever an active network device is connected to the port.
  • Problems with the switch hardware and software are indicated by flashing the Fault and other switch LEDs.

    Refer to the *Installation Guide* shipped with the switch for a description of the LED behavior and information on using the LEDs for troubleshooting.

■ Check the network topology/installation. Refer to the *Installation Guide* shipped with the switch for topology information.

■ Check cables for damage, correct type, and proper connections. You should also use a cable tester to check your cables for compliance to the relevant IEEE 802.3 specification. Refer to the *Installation Guide* shipped with the switch for correct cable types and connector pin-outs.

■ Use ProCurve Manager to help isolate problems and recommend solutions.

■ Use the Port Utilization Graph and Alert Log in the web browser interface included in the switch to help isolate problems. Refer to Chapter 5, “Using the ProCurve Web Browser Interface” for operating information. These tools are available through the web browser interface:
  • Port Utilization Graph
  • Alert Log
  • Port Status and Port Counters screens
  • Diagnostic tools (Link test, Ping test, configuration file browser)

■ For help in isolating problems, use the easy-to-access switch console built into the switch or Telnet to the switch console. Refer to chapters 3 and 4 for operating information on the Menu and CLI interfaces included in the console. These tools are available through the switch console
  • Status and Counters screens
  • Event Log
  • Diagnostics tools (Link test, Ping test, configuration file browser, and advanced user commands)
Browser or Telnet Access Problems

Cannot access the web browser interface:
- Access may be disabled by the **Web Agent Enabled** parameter in the switch console. Check the setting on this parameter by selecting:
  2. Switch Configuration …
    1. System Information
- The switch may not have the correct IP address, subnet mask or gateway. Verify by connecting a console to the switch’s Console port and selecting:
  2. Switch Configuration …
    5. IP Configuration

*Note:* If DHCP/Bootp is used to configure the switch, the IP addressing can be verified by selecting:
  1. Status and Counters …
    2. Switch Management Address Information
    also check the DHCP/Bootp server configuration to verify correct IP addressing.
- If you are using DHCP to acquire the IP address for the switch, the IP address “lease time” may have expired so that the IP address has changed. For more information on how to “reserve” an IP address, refer to the documentation for the DHCP application that you are using.
- If one or more IP-Authorized managers are configured, the switch allows web browser access only to a device having an authorized IP address. For more information on IP Authorized managers, refer to the *Access Security Guide* for your switch.
- Java™ applets may not be running on the web browser. They are required for the switch web browser interface to operate correctly. Refer to the online Help on your web browser for how to run the Java applets.
Troubleshooting
Browser or Telnet Access Problems

Cannot Telnet into the switch console from a station on the network:

■ Off subnet management stations can lose Telnet access if you enable routing without first configuring a static (default) route. That is, the switch uses the IP default gateway only while operating as a Layer 2 device. While routing is enabled on the switch, the IP default gateway is not used. You can avoid this problem by using the ip route command to configure a static (default) route before enabling routing. For more information, refer to the chapter titled “IP Routing Features” in the Multicast and Routing Guide for your switch.

■ Telnet access may be disabled by the Inbound Telnet Enabled parameter in the System Information screen of the menu interface:

2. Switch Configuration
   1. System Information

■ The switch may not have the correct IP address, subnet mask, or gateway. Verify by connecting a console to the switch’s Console port and selecting:

2. Switch Configuration
   5. IP Configuration

Note: If DHCP/Bootp is used to configure the switch, refer to the Note, above.

■ If you are using DHCP to acquire the IP address for the switch, the IP address “lease time” may have expired so that the IP address has changed. For more information on how to “reserve” an IP address, refer to the documentation for the DHCP application that you are using.

■ If one or more IP-Authorized managers are configured, the switch allows inbound telnet access only to a device having an authorized IP address. For more information on IP Authorized managers, refer to the Access Security Guide for your switch.
Unusual Network Activity

Network activity that fails to meet accepted norms may indicate a hardware problem with one or more of the network components, possibly including the switch. Such problems can also be caused by a network loop or simply too much traffic for the network as it is currently designed and implemented. Unusual network activity is usually indicated by the LEDs on the front of the switch or measured with the switch console interface or with a network management tool such as ProCurve Manager. Refer to the Installation Guide you received with the switch for information on using LEDs to identify unusual network activity.

A topology loop can also cause excessive network activity. The Event Log “FFI” messages can be indicative of this type of problem.

General Problems

**The network runs slow; processes fail; users cannot access servers or other devices.** Broadcast storms may be occurring in the network. These may be due to redundant links between nodes.

- If you are configuring a port trunk, finish configuring the ports in the trunk before connecting the related cables. Otherwise you may inadvertently create a number of redundant links (i.e. topology loops) that will cause broadcast storms.
- Turn on Spanning Tree Protocol to block redundant links (i.e. topology loops)
- Check for FFI messages in the Event Log.

**Duplicate IP Addresses.** This is indicated by this Event Log message:

```
ip: Invalid ARP source: IP address on IP address
```

*where:* both instances of *IP address* are the same address, indicating the switch’s IP address has been duplicated somewhere on the network.

**Duplicate IP Addresses in a DHCP Network.** If you use a DHCP server to assign IP addresses in your network and you find a device with a valid IP address that does not appear to communicate properly with the server or other devices, a duplicate IP address may have been issued by the server. This can occur if a client has not released a DHCP-assigned IP address after the intended expiration time and the server “leases” the address to another device.
Troubleshooting
Unusual Network Activity

This can also happen, for example, if the server is first configured to issue IP addresses with an unlimited duration, then is subsequently configured to issue IP addresses that will expire after a limited duration. One solution is to configure “reservations” in the DHCP server for specific IP addresses to be assigned to devices having specific MAC addresses. For more information, refer to the documentation for the DHCP server.

One indication of a duplicate IP address in a DHCP network is this Event Log message:

```
ip: Invalid ARP source: <IP-address> on <IP-address>

where: both instances of IP-address are the same address, indicating the IP address that has been duplicated somewhere on the network.
```

**The Switch Has Been Configured for DHCP/Bootp Operation, But Has Not Received a DHCP or Bootp Reply.** When the switch is first configured for DHCP/Bootp operation, or if it is rebooted with this configuration, it immediately begins sending request packets on the network. If the switch does not receive a reply to its DHCP/Bootp requests, it continues to periodically send request packets, but with decreasing frequency. Thus, if a DHCP or Bootp server is not available or accessible to the switch when DHCP/Bootp is first configured, the switch may not immediately receive the desired configuration. After verifying that the server has become accessible to the switch, reboot the switch to re-start the process.

**802.1Q Prioritization Problems**

**Ports configured for non-default prioritization (level 1 - 7) are not performing the specified action.** If the ports were placed in a trunk group after being configured for non-default prioritization, the priority setting was automatically reset to zero (the default). Ports in a trunk group operate only at the default priority setting.

**ACL Problems**

**ACLs are properly configured and assigned to VLANs, but the switch is not using the ACLs to filter IP layer 3 packets.**

1. The switch may be running with IP routing disabled. To ensure that IP routing is enabled, execute `show running` and look for the IP routing statement in the resulting listing. For example:
Troubleshooting
Unusual Network Activity

Figure C-1. Indication that Routing Is Enabled

Note

If an ACL assigned to a VLAN includes an ACE referencing an IP address on the switch itself as a packet source or destination, the ACE screens traffic to or from this switch address regardless of whether IP routing is enabled. This is a security measure designed to help protect the switch from unauthorized management access.

If you need to configure IP routing, execute the `ip routing` command.

2. ACL filtering on the switches covered in this guide applies only to routed packets and packets having a destination IP address (DA) on the switch itself. Also, the switch applies assigned ACLs only at the point where traffic enters or leaves the switch on a VLAN. Ensure that you have correctly applied your ACLs (“in” and/or “out”) to the appropriate VLAN(s).

The switch does not allow management access from a device on the same VLAN.

The implicit `deny any` function that the switch automatically applies as the last entry in any ACL always blocks packets having the same DA as the switch’s IP address on the same VLAN. That is, bridged packets with the switch itself as the destination are blocked as a security measure. To preempt this action, edit the ACL to include an ACE that permits access to the switch’s DA on that VLAN from the management device.
Error (Invalid input) when entering an IP address.

When using the “host” option in the command syntax, ensure that you are not including a mask in either dotted decimal or CIDR format. Using the “host” option implies a specific host device and therefore does not permit any mask entry.

```plaintext
ProCurve(config)# access-list 6 permit host 10.28.100.100
Invalid input: 255.255.255.255

ProCurve(config)# access-list 6 permit host 10.28.100.100/32
Invalid input: 10.28.100.100/32
```

Figure C-2. Examples of Correctly and Incorrectly Specifying a Single Host

Apparent failure to log all “Deny” Matches.

Where the `log` statement is included in multiple ACEs configured with a “deny” option, a large volume of “deny” matches generating logging messages in a short period of time can impact switch performance. If it appears that the switch is not consistently logging all “deny” matches, try reducing the number of logging actions by removing the `log` statement from some ACEs configured with the “deny” action.

The switch does not allow any routed access from a specific host, group of hosts, or subnet.

The implicit `deny any` function that the switch automatically applies as the last entry in any ACL may be blocking all access by devices not specifically permitted by an entry in an ACL affecting those sources. If you are using the ACL to block specific hosts, a group of hosts, or a subnet, but want to allow any access not specifically permitted, insert `permit any` as the last explicit entry in the ACL.

The switch is not performing routing functions on a VLAN

Two possible causes of this problem are:

- Routing is not enabled. If `show running` indicates that routing is not enabled, use the `ip routing` command to enable routing.

- On a switch covered in this guide, an ACL may be blocking access to the VLAN. Ensure that the switch’s IP address on the VLAN is not blocked by one of the ACE entries in an ACL applied to that VLAN. A
common mistake is to either not explicitly permit the switch’s IP address as a DA or to use a wildcard ACL mask in a deny statement that happens to include the switch’s IP address. For an example of this problem, refer to the section titled “General ACL Operating Notes” in the “Access Control Lists (ACLs)” chapter of the Advanced Traffic Management Guide for your switch.

Routing Through a Gateway on the Switch Fails

Configuring a “deny” ACE that includes a gateway address can block traffic attempting to use the gateway as a next-hop.

Remote Gateway Case. For example, configuring ACL “101” (below) and applying it outbound on VLAN 1 in figure C-4 includes the router gateway (10.0.8.1) needed by devices on other networks. This can prevent the switch from sending ARP and other routing messages to the gateway router to support traffic from authorized remote networks.

In figure C-4, this ACE denies access to the 10 Net’s 10.0.8.1 router gateway needed by the 20 Net. (Subnet mask is 255.255.255.0.)

Figure C-3. Example of ACE Blocking an Entire Subnet
Troubleshooting
Unusual Network Activity

Figure C-4. Example of Inadvertently Blocking a Gateway

To avoid inadvertently blocking the remote gateway for authorized traffic from another network (such as the 20 Net in this example):

1. Configure an ACE that specifically permits authorized traffic from the remote network.

2. Configure narrowly defined ACEs to block unwanted IP traffic that would otherwise use the gateway. Such ACEs might deny traffic for a particular application, particular hosts, or an entire subnet.

3. Configure a “permit any” ACE to specifically allow any IP traffic to move through the gateway.

Local Gateway Case. If you use the switch as a gateway for traffic you want routed between subnets, use these general steps to avoid blocking the gateway for authorized applications:

1. Configure gateway security first for routing with specific permit and deny statements.

2. Permit authorized traffic.

3. Deny any unauthorized traffic that you have not already denied in step 1.
IGMP-Related Problems

IP Multicast (IGMP) Traffic That Is Directed By IGMP Does Not Reach IGMP Hosts or a Multicast Router Connected to a Port. IGMP must be enabled on the switch and the affected port must be configured for “Auto” or “Forward” operation.

IP Multicast Traffic Floods Out All Ports; IGMP Does Not Appear To Filter Traffic. The IGMP feature does not operate if the switch or VLAN does not have an IP address configured manually or obtained through DHCP/Bootp. To verify whether an IP address is configured for the switch or VLAN, do either of the following:

■ Try Using the Web Browser Interface: If you can access the web browser interface, then an IP address is configured.

■ Try To Telnet to the Switch Console: If you can Telnet to the switch, then an IP address is configured.

■ Using the Switch Console Interface: From the Main Menu, check the Management Address Information screen by clicking on:
  1. Status and Counters
  2. Switch Management Address Information

LACP-Related Problems

Unable to enable LACP on a port with the `interface <port-number> lacp` command. In this case, the switch displays the following message:

Operation is not allowed for a trunked port.

You cannot enable LACP on a port while it is configured as static Trunk port. To enable LACP on static-trunked port, first use the `no trunk <port-number>` command to disable the static trunk assignment, then execute `interface <port-number> lacp`.

Caution

Removing a port from a trunk without first disabling the port can create a traffic loop that can slow down or halt your network. Before removing a port from a trunk, ProCurve recommends that you either disable the port or disconnect it from the LAN.
Mesh-Related Problems

Traffic on a dynamic VLAN does not get through the switch mesh.

GVRP enables dynamic VLANs. Ensure that all switches in the mesh have GVRP enabled.

Port-Based Access Control (802.1X)-Related Problems

Note

To list the 802.1X port-access Event Log messages stored on the switch, use show log 802.

See also “Radius-Related Problems” on page C-17.

The switch does not receive a response to RADIUS authentication requests. In this case, the switch will attempt authentication using the secondary method configured for the type of access you are using (console, Telnet, or SSH).

There can be several reasons for not receiving a response to an authentication request. Do the following:

- Use ping to ensure that the switch has access to the configured RADIUS servers.
- Verify that the switch is using the correct encryption key (RADIUS secret key) for each server.
- Verify that the switch has the correct IP address for each RADIUS server.
- Ensure that the radius-server timeout period is long enough for network conditions.

The switch does not authenticate a client even though the RADIUS server is properly configured and providing a response to the authentication request. If the RADIUS server configuration for authenticating the client includes a VLAN assignment, ensure that the VLAN exists as a static VLAN on the switch. Refer to “How 802.1X Authentication Affects VLAN Operation” in the Access Security Guide for your switch.

During RADIUS-authenticated client sessions, access to a VLAN on the port used for the client sessions is lost. If the affected VLAN is configured as untagged on the port, it may be temporarily blocked on that port during an 802.1X session. This is because the switch has temporarily assigned another
VLAN as untagged on the port to support the client access, as specified in the response from the RADIUS server. Refer to “How 802.1X Authentication Affects VLAN Operation” in the Access Security Guide for your switch.

The switch appears to be properly configured as a supplicant, but cannot gain access to the intended authenticator port on the switch to which it is connected. If `aaa authentication port-access` is configured for Local, ensure that you have entered the local login (operator-level) username and password of the authenticator switch into the `identity` and `secret` parameters of the supplicant configuration. If instead, you enter the enable (manager-level) username and password, access will be denied.

The supplicant statistics listing shows multiple ports with the same authenticator MAC address. The link to the authenticator may have been moved from one port to another without the supplicant statistics having been cleared from the first port. Refer to “Note on Supplicant Statistics” in the chapter on Port-Based and Client-Based Access Control in the Access Security Guide for your switch.

The `show port-access authenticator <port-list>` command shows one or more ports remain open after they have been configured with control unauthorized. 802.1X is not active on the switch. After you execute `aaa port-access authenticator active`, all ports configured with control unauthorized should be listed as Closed.

```
ProCurve(config)# show port-access authenticator e A9
Port Access Authenticator Status
Port-access authenticator activated [No] : (No)
Access Authenticator  Authenticator
Port Status Control  State  Backend State
---- ------ --------- ---------------
A9  Open  FU  Force Auth  Idle

ProCurve(config)# aaa port-access authenticator active

ProCurve(config)# show port-access authenticator e A9
Port Access Authenticator Status
Port-access authenticator activated [No] : Yes
Access Authenticator  Authenticator
Port Status Control  State  Backend State
---- ------ --------- ---------------
A9  Closed  FU  Force Unauth  Idle
```

Figure C-5. Authenticator Ports Remain “Open” Until Activated
RADIUS server fails to respond to a request for service, even though the server's IP address is correctly configured in the switch. Use `show radius` to verify that the encryption key (RADIUS secret key) the switch is using is correct for the server being contacted. If the switch has only a global key configured, then it either must match the server key or you must configure a server-specific key. If the switch already has a server-specific key assigned to the server's IP address, then it overrides the global key and must match the server key.

```
10.33.18.119(config)# show radius
Status and Counters - General RADIUS Information
   Deadtime [min] : 0
   Timeout [secs] : 5
   Retransmit Attempts : 3
   Global Encryption Key : My-Global-Key

<table>
<thead>
<tr>
<th>Auth</th>
<th>Acct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>10.33.18.119</td>
<td>1012</td>
</tr>
</tbody>
</table>
```

Figure C-6. Displaying Encryption Keys

Also, ensure that the switch port used to access the RADIUS server is not blocked by an 802.1X configuration on that port. For example, `show port-access authenticator <port-list>` gives you the status for the specified ports. Also, ensure that other factors, such as port security or any 802.1X configuration on the RADIUS server are not blocking the link.

The authorized MAC address on a port that is configured for both 802.1X and port security either changes or is re-acquired after execution of `aaa port-access authenticator <port-list> initialize`. If the port is force-authorized with `aaa port-access authenticator <port-list> control authorized` command and port security is enabled on the port, then executing `initialize` causes the port to clear the learned address and learn a new address from the first packet it receives after you execute `initialize`.

A trunked port configured for 802.1X is blocked. If you are using RADIUS authentication and the RADIUS server specifies a VLAN for the port, the switch allows authentication, but blocks the port. To eliminate this problem, either remove the port from the trunk or reconfigure the RADIUS server to avoid specifying a VLAN.
QoS-Related Problems

**Loss of communication when using VLAN-tagged traffic.** If you cannot communicate with a device in a tagged VLAN environment, ensure that the device either supports VLAN tagged traffic or is connected to a VLAN port that is configured as **Untagged**.

Radius-Related Problems

**The switch does not receive a response to RADIUS authentication requests.** In this case, the switch will attempt authentication using the secondary method configured for the type of access you are using (console, Telnet, or SSH).

There can be several reasons for not receiving a response to an authentication request. Do the following:

- Use **ping** to ensure that the switch has access to the configured RADIUS server.
- Verify that the switch is using the correct encryption key for the designated server.
- Verify that the switch has the correct IP address for the RADIUS server.
- Ensure that the **radius-server timeout** period is long enough for network conditions.
- Verify that the switch is using the same UDP port number as the server.

**RADIUS server fails to respond to a request for service, even though the server’s IP address is correctly configured in the switch.** Use **show radius** to verify that the encryption key the switch is using is correct for the server being contacted. If the switch has only a global key configured, then it either must match the server key or you must configure a server-specific key. If the switch already has a server-specific key assigned to the server’s IP address, then it overrides the global key and must match the server key.
Troubleshooting
Unusual Network Activity

Figure C-7. Examples of Global and Unique Encryption Keys

Spanning-Tree Protocol (MSTP) and Fast-Uplink Problems

Caution

If you enable MSTP, it is recommended that you leave the remainder of the MSTP parameter settings at their default values until you have had an opportunity to evaluate MSTP performance in your network. Because incorrect MSTP settings can adversely affect network performance, you should avoid making changes without having a strong understanding of how MSTP operates. To learn the details of MSTP operation, refer to the IEEE 802.1s standard.

Broadcast Storms Appearing in the Network. This can occur when there are physical loops (redundant links) in the topology. Where this exists, you should enable MSTP on all bridging devices in the topology in order for the loop to be detected.

STP Blocks a Link in a VLAN Even Though There Are No Redundant Links in that VLAN. In 802.1Q-compliant switches MSTP blocks redundant physical links even if they are in separate VLANs. A solution is to use only one, multiple-VLAN (tagged) link between the devices. Also, if ports are available, you can improve the bandwidth in this situation by using a port trunk. Refer to “Spanning Tree Operation with VLANs” in the chapter titled “Static Virtual LANs (VLANs)” in the Advanced Traffic Management Guide for your switch.
Fast-Uplink Troubleshooting. Some of the problems that can result from incorrect usage of Fast-Uplink MSTP include temporary loops and generation of duplicate packets.

Problem sources can include:

- Fast-Uplink is configured on a switch that is the MSTP root device.
- Either the Hello Time or the Max Age setting (or both) is too long on one or more switches. Return the Hello Time and Max Age settings to their default values (2 seconds and 20 seconds, respectively, on a switch).
- A “downlink” port is connected to a switch that is further away (in hop count) from the root device than the switch port on which fast-uplink MSTP is configured.
- Two edge switches are directly linked to each other with a fast-uplink (Mode = Uplink) connection.
- Fast uplink is configured on both ends of a link.
- A switch serving as a backup MSTP root switch has ports configured for fast-uplink MSTP and has become the root device due to a failure in the original root device.

SSH-Related Problems

Switch access refused to a client. Even though you have placed the client’s public key in a text file and copied the file (using the copy tftp pub-key-file command) into the switch, the switch refuses to allow the client to have access. If the source SSH client is an SSHv2 application, the public key may be in the PEM format, which the switch (SSHv1) does not interpret. Check the SSH client application for a utility that can convert the PEM-formatted key into an ASCII-formatted key.

Executing IP SSH does not enable SSH on the switch. The switch does not have a host key. Verify by executing show ip host-public-key. If you see the message

```
ssh cannot be enabled until a host key is configured
(use 'crypto' command).
```

then you need to generate an SSH key pair for the switch. To do so, execute crypto key generate. (Refer to “2. Generating the Switch’s Public and Private Key Pair” in the SSH chapter of the Access Security Guide for your switch.)
Switch does not detect a client’s public key that does appear in the switch’s public key file (show ip client-public-key). The client’s public key entry in the public key file may be preceded by another entry that does not terminate with a new line (CR). In this case, the switch interprets the next sequential key entry as simply a comment attached to the preceding key entry. Where a public key file has more than one entry, ensure that all entries terminate with a new line (CR). While this is optional for the last entry in the file, not adding a new line to the last entry creates an error potential if you either add another key to the file at a later time or change the order of the keys in the file.

An attempt to copy a client public-key file into the switch has failed and the switch lists one of the following messages.

- Download failed: overlength key in key file.
- Download failed: too many keys in key file.
- Download failed: one or more keys is not a valid RSA public key.

The public key file you are trying to download has one of the following problems:

- A key in the file is too long. The maximum key length is 1024 characters, including spaces. This could also mean that two or more keys are merged together instead of being separated by a <CR><LF>.
- There are more than ten public keys in the key file.
- One or more keys in the file is corrupted or is not a valid rsa public key.

Client ceases to respond (“hangs”) during connection phase. The switch does not support data compression in an SSH session. Clients will often have compression turned on by default, but will disable it during the negotiation phase. A client which does not recognize the compression-request FAILURE response may fail when attempting to connect. Ensure that compression is turned off before attempting a connection to prevent this problem.
TACACS-Related Problems

**Event Log.** When troubleshooting TACACS+ operation, check the switch’s Event Log for indications of problem areas.

**All Users Are Locked Out of Access to the Switch.** If the switch is functioning properly, but no username/password pairs result in console or Telnet access to the switch, the problem may be due to how the TACACS+ server and/or the switch are configured. Use one of the following methods to recover:

- Access the TACACS+ server application and adjust or remove the configuration parameters controlling access to the switch.

- If the above method does not work, try eliminating configuration changes in the switch that have not been saved to flash (boot-up configuration) by causing the switch to reboot from the boot-up configuration (which includes only the configuration changes made prior to the last `write memory` command.) If you did not use `write memory` to save the authentication configuration to flash, then pressing the Reset button or cycling the power reboots the switch with the boot-up configuration.

- Disconnect the switch from network access to any TACACS+ servers and then log in to the switch using either Telnet or direct console port access. Because the switch cannot access a TACACS+ server, it will default to local authentication. You can then use the switch’s local Operator or Manager username/password pair to log on.

- As a last resort, use the Clear/Reset button combination to reset the switch to its factory default boot-up configuration. Taking this step means you will have to reconfigure the switch to return it to operation in your network.

**No Communication Between the Switch and the TACACS+ Server Application.** If the switch can access the server device (that is, it can `ping` the server), then a configuration error may be the problem. Some possibilities include:

- The server IP address configured with the switch’s `tacacs-server host` command may not be correct. (Use the switch’s `show tacacs-server` command to list the TACACS+ server IP address.)
Troubleshooting
Unusual Network Activity

- The encryption key configured in the server does not match the encryption key configured in the switch (by using the `tacacs-server key` command). Verify the key in the server and compare it to the key configured in the switch. (Use `show tacacs-server` to list the global key. Use `show config` or `show config running` to list any server-specific keys.)

- The accessible TACACS+ servers are not configured to provide service to the switch.

**Access Is Denied Even Though the Username/Password Pair Is Correct.** Some reasons for denial include the following parameters controlled by your TACACS+ server application:

- The account has expired.
- The access attempt is through a port that is not allowed for the account.
- The time quota for the account has been exhausted.
- The time credit for the account has expired.
- The access attempt is outside of the time frame allowed for the account.
- The allowed number of concurrent logins for the account has been exceeded.

For more help, refer to the documentation provided with your TACACS+ server application.

**Unknown Users Allowed to Login to the Switch.** Your TACACS+ application may be configured to allow access to unknown users by assigning them the privileges included in a `default user` profile. Refer to the documentation provided with your TACACS+ server application.

**System Allows Fewer Login Attempts than Specified in the Switch Configuration.** Your TACACS+ server application may be configured to allow fewer login attempts than you have configured in the switch with the `aaa authentication num-attempts` command.
TimeP, SNTP, or Gateway Problems

The Switch Cannot Find the Time Server or the Configured Gateway.

TimeP, SNTP, and Gateway access are through the primary VLAN, which in the default configuration is the DEFAULT_VLAN. If the primary VLAN has been moved to another VLAN, it may be disabled or does not have ports assigned to it.

VLAN-Related Problems

Monitor Port. When using the monitor port in a multiple VLAN environment, the switch handles broadcast, multicast, and unicast traffic output from the monitor port as follows:

- If the monitor port is configured for tagged VLAN operation on the same VLAN as the traffic from monitored ports, the traffic output from the monitor port carries the same VLAN tag.
- If the monitor port is configured for untagged VLAN operation on the same VLAN as the traffic from the monitored ports, the traffic output from the monitor port is untagged.
- If the monitor port is not a member of the same VLAN as the traffic from the monitored ports, traffic from the monitored ports does not go out the monitor port.

None of the devices assigned to one or more VLANs on an 802.1Q-compliant switch are being recognized. If multiple VLANs are being used on ports connecting 802.1Q-compliant devices, inconsistent VLAN IDs may have been assigned to one or more VLANs. For a given VLAN, the same VLAN ID must be used on all connected 802.1Q-compliant devices.

Link Configured for Multiple VLANs Does Not Support Traffic for One or More VLANs. One or more VLANs may not be properly configured as “Tagged” or “Untagged”. A VLAN assigned to a port connecting two 802.1Q-compliant devices must be configured the same on both ports. For example, VLAN_1 and VLAN_2 use the same link between switch “X” and switch “Y”.
1. If VLAN_1 (VID=1) is configured as “Untagged” on port 3 on switch “X”, then it must also be configured as “Untagged” on port 7 on switch “Y”. Make sure that the VLAN ID (VID) is the same on both switches.

2. Similarly, if VLAN_2 (VID=2) is configured as “Tagged” on the link port on switch “A”, then it must also be configured as “Tagged” on the link port on switch “B”. Make sure that the VLAN ID (VID) is the same on both switches.

**Duplicate MAC Addresses Across VLANs.** The switches covered in this guide operate with multiple forwarding databases. Thus, duplicate MAC addresses occurring on different VLANs can appear where a device having one MAC address is a member of more than one 802.1Q VLAN, and the switch port to which the device is linked is using VLANs (instead of MSTP or trunking) to establish redundant links to another switch. If the other device sends traffic over multiple VLANs, its MAC address will consistently appear in multiple VLANs on the switch port to which it is linked.

Note that attempting to create redundant paths through the use of VLANs will cause problems with some switches. One symptom is that a duplicate MAC address appears in the Port Address Table of one port, and then later appears on another port. While the switches have multiple forwarding databases, and thus does not have this problem, some switches with a single forwarding database for all VLANs may produce the impression that a connected device is moving among ports because packets with the same MAC address but different VLANs are received on different ports. You can avoid this problem by creating redundant paths using port trunks or spanning tree.
Fan Failure

When two or more fans fail, a tow-minute timer starts. After two minutes, the switch is powered down and must be rebooted to restart it. This protects the switch from possible overheating.

ProCurve recommends that you replace a failed fan tray assembly within one minute of removing it.
Troubleshooting
Using the Event Log To Identify Problem Sources

The Event Log records operating events as single-line entries listed in chronological order, and serves as a tool for isolating problems. Each Event Log entry is composed of five or six fields, depending on whether numbering is turned on or not:

<table>
<thead>
<tr>
<th>Severity</th>
<th>Date</th>
<th>Time</th>
<th>Event number</th>
<th>System Module</th>
<th>Event Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>08/05/06</td>
<td>10:52:32</td>
<td>00063</td>
<td>ports:</td>
<td>port A1 enabled</td>
</tr>
</tbody>
</table>

Severity is one of the following codes:
- **I** (information) indicates routine events.
- **W** (warning) indicates that a service has behaved unexpectedly.
- **M** (major) indicates that a severe switch error has occurred.
- **D** (debug) reserved for ProCurve internal diagnostic information.

Date is the date in **mm/dd/yy** format that the entry was placed in the log.

Time is the time in **hh:mm:ss** format that the entry was placed in the log.

Event Number is the number assigned to the event. This feature can be turned on with the log-number command.

System Module is the internal module (such as “ports” for port manager) that generated the log entry. If VLANs are configured, then a VLAN name also appears for an event that is specific to an individual VLAN. Table C-1 on page C-27 lists the individual modules.

Event Message is a brief description of the operating event.

The Event Log holds up to 1000 lines in chronological order, from the oldest to the newest. Each line consists of one complete event message. Once the log has received 1000 entries, it discards the current oldest line each time a new line is received. The Event Log window contains 14 log entry lines and can be positioned to any location in the log.
The Event Log will be **erased** if power to the switch is interrupted.

(The Event Log is *not* erased by using the **Reboot Switch** command in the Main Menu.)

**Table C-1. Event Log System Modules**

<table>
<thead>
<tr>
<th>Module</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>addrMgr</td>
<td>Address table</td>
</tr>
<tr>
<td>chassis</td>
<td>switch hardware</td>
</tr>
<tr>
<td>bootp</td>
<td>bootp addressing</td>
</tr>
<tr>
<td>connfilt</td>
<td>Connection-Rate filtering</td>
</tr>
<tr>
<td>console</td>
<td>Console interface</td>
</tr>
<tr>
<td>dhcp</td>
<td>DHCP addressing</td>
</tr>
<tr>
<td>download</td>
<td>file transfer</td>
</tr>
<tr>
<td>FFI</td>
<td>Find, Fix, and Inform -- available in the console Event Log and web browser</td>
</tr>
<tr>
<td></td>
<td>interface alert log</td>
</tr>
<tr>
<td>garp</td>
<td>GARP/GVRP</td>
</tr>
<tr>
<td>igmp</td>
<td>IP Multicast</td>
</tr>
<tr>
<td>ip</td>
<td>IP-related</td>
</tr>
<tr>
<td>ipx</td>
<td>Novell Netware</td>
</tr>
<tr>
<td>lacp</td>
<td>Dynamic LACP trunks</td>
</tr>
<tr>
<td>ldbal</td>
<td>Load-Balance Protocol (meshing)</td>
</tr>
<tr>
<td>lldp</td>
<td>Link-Layer Discovery Protocol</td>
</tr>
<tr>
<td>maclock</td>
<td>MAC lockdown and MAC lockout</td>
</tr>
<tr>
<td>mgr</td>
<td>Console management</td>
</tr>
<tr>
<td>PIM</td>
<td>Protocol-Independent multicast</td>
</tr>
<tr>
<td>ports</td>
<td>Change in port status; static trunks</td>
</tr>
<tr>
<td>radius</td>
<td>RADIUS authentication</td>
</tr>
<tr>
<td>snmp</td>
<td>SNMP communications</td>
</tr>
<tr>
<td>ssh</td>
<td>Secure-Shell status</td>
</tr>
<tr>
<td>ssl</td>
<td>Secure sockets layer status</td>
</tr>
<tr>
<td>stp</td>
<td>Spanning Tree</td>
</tr>
<tr>
<td>sys, system</td>
<td>Switch management</td>
</tr>
<tr>
<td>telnet</td>
<td>Telnet activity</td>
</tr>
<tr>
<td>timep</td>
<td>Time protocol</td>
</tr>
<tr>
<td>udpf</td>
<td>UDP broadcast forwarder</td>
</tr>
<tr>
<td>vlan</td>
<td>VLAN operations</td>
</tr>
<tr>
<td>RateLim</td>
<td>Rate-limiting</td>
</tr>
</tbody>
</table>
Troubleshooting
Using the Event Log To Identify Problem Sources

Menu: Entering and Navigating in the Event Log

From the Main Menu, select Event Log.

<table>
<thead>
<tr>
<th>Module</th>
<th>Event Description</th>
<th>Module</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp</td>
<td>Transmission control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tftp</td>
<td>File transfer for new OS or config.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keys:    W=Warning     I=Information
         M-Major       D=Debug

---Event Log Listing: Events Since Boot  -----  
I  04/24/06 15:42:20 00063 system: System went down: 04/24/06 15:41:27
I  04/24/06 15:42:22 00064 system: Operator cold reboot from CONSOLE session.
I  04/24/06 15:42:31 00387 lACP: Passive Dynamic LACP enable on all ports.
I  04/24/06 15:42:33 00068 chassis: Slot A Inserted
I  04/24/06 15:42:33 00690 chassis: Slot B Inserted
I  04/24/06 15:42:34 00071 chassis: Power Supply OK: Supply : 1, Failures: 0

Figure C-1. Example of an Event Log Display with Numbering Turned On

The log status line at the bottom of the display identifies where in the sequence of event messages the display is currently positioned.

To display various portions of the Event Log, either preceding or following the currently visible portion, use either the actions listed at the bottom of the display (Next page, Prev page, or End), or the keys described in the following table:

Table C-2. Event Log Control Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[N]</td>
<td>Advance the display by one page (next page).</td>
</tr>
<tr>
<td>[P]</td>
<td>Roll back the display by one page (previous page).</td>
</tr>
<tr>
<td>[v]</td>
<td>Advance display by one event (down one line).</td>
</tr>
<tr>
<td>[^]</td>
<td>Roll back display by one event (up one line).</td>
</tr>
<tr>
<td>[E]</td>
<td>Advance to the end of the log.</td>
</tr>
<tr>
<td>[H]</td>
<td>Display Help for the Event Log.</td>
</tr>
</tbody>
</table>
Troubleshooting
Using the Event Log To Identify Problem Sources

CLI: Listing Events

**Syntax:** show logging [-a] [<search-text>]

*Uses the CLI to list:*
- Events recorded since the last boot of the switch
- All events recorded
- Event entries containing a specific keyword, either since the last boot or all events recorded

*show logging*

*Lists recorded log messages since last reboot.*

*show logging -a*

*Lists all recorded log messages, including those before the last reboot.*

*show logging -a system*

*Lists log messages with “system” in the text or module name.*

*show logging system*

*Lists all log messages since the last reboot that have “system” in the text or module name.*

CLI: Turn Event Numbering On

**Syntax:** [no] log-number

*Turns event numbering on or off*
Reducing Duplicate Event Log and SNMP Trap Messages

A recurring event can generate a series of duplicate Event Log messages and SNMP traps in a relatively short time. This can flood the Event Log and any configured SNMP trap receivers with excessive, exactly identical messages. To help reduce this problem, the switch uses log throttle periods to regulate (throttle) duplicate messages for a given recurring event, and maintains a counter to record how many times it detects duplicates of a particular event since the last system reboot. That is, when the first instance of a particular event or condition generates a message, the switch initiates a log throttle period that applies to all recurrences of that event. If the logged event recurs during the log throttle period, the switch increments the counter initiated by the first instance of the event, but does not generate a new message. If the logged event repeats again after the log throttle period expires, then the switch generates a duplicate of the first message, increments the counter, and starts a new log throttle period during which any additional instances of the event are counted, but not logged. Thus, for a particular, recurring event, the switch displays one instance of the corresponding message in the Event Log for each successive log throttle period applied to recurrences of that event. Also, each logged instance of the event message includes counter data showing how many times the event has occurred since the last reboot. The switch manages messages to SNMP trap receivers in the same way.

The log throttle period for an event depends on the event’s severity level:

<table>
<thead>
<tr>
<th>Severity</th>
<th>Log Throttle Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (Information)</td>
<td>6000 Seconds</td>
</tr>
<tr>
<td>W (Warning)</td>
<td>600 Seconds</td>
</tr>
<tr>
<td>M (Major)</td>
<td>6 Seconds</td>
</tr>
<tr>
<td>D (Debug)</td>
<td>60 Seconds</td>
</tr>
</tbody>
</table>

**Example of Log Message Throttling.** For example, suppose that you configure VLAN 100 on the switch to support PIM operation, but do not configure an IP address. If PIM attempted to use VLAN 100, the switch would generate the first instance of the following Event Log message and counter.

```
W 10/01/06 09:00:33 PIM:No IP address configured on VID 100 (1)
```

The counter indicates that this is the first instance of this event since the switch last rebooted.

**Figure C-10. Example of the First Instance of an Event Message and Counter**
If PIM operation caused the same event to occur six more times during the initial log throttle period, there would be no further entries in the Event Log. However, if the event occurred again after the log throttle period expired, the switch would repeat the message (with an updated counter) and start a new log throttle period.

![Figure C-11. Example of Duplicate Messages Over Multiple Log Throttling Periods]

Note that if the same type of event occurs under different circumstances, the switch handles these as unrelated events for the purpose of Event Log messages. For example, if PIM operation simultaneously detected that VLANs 100 and 205 were configured without IP addresses, you would see log messages similar to the following:

![Figure C-12. Example of Log Messages Generated by Unrelated Events of the Same Type]

**Example of Event Counter Operation.** Suppose the switch detects the following after a reboot:

- Three duplicate instances of the PIM “Send error” during the first log throttle period for this event
Five more instances of the same Send error during the second log throttle period for this event

Four instances of the same Send error during the third log throttle period for this event

In this case, the duplicate message would appear three times in the Event Log (once for each log throttle period for the event being described), and the Duplicate Message Counter would increment as shown in table C-3. (The same operation would apply for messages sent to any configured SNMP trap receivers.)

**Table C-3. How the Duplicate Message Counter Increments**

<table>
<thead>
<tr>
<th>Instances During 1st Log Throttle Period</th>
<th>Instances During 2nd Log Throttle Period</th>
<th>Instances During 3rd Log Throttle Period</th>
<th>Duplicate Message Counter*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

*This value always comprises the first instance of the duplicate message in the current log throttle period plus all previous occurrences of the duplicate message occurring since the switch last rebooted.*
Troubleshooting
Debug and Syslog Messaging Operation

Debug and Syslog Messaging Operation

The switch’s Event Log records switch-level progress, status, and warning messages. The Debug/System-Logging (Syslog) feature provides a method for recording messages you can use to help in debugging network-level problems, such as routing misconfigurations and other network protocol details.

Debug enables you to specify the types of event notification messages to send to external devices. Debug messaging reports on these event types:

- ACL “deny” matches
- Selected IP routing events
- Events that generate messages for the switch’s Event Log

You can configure the switch to send debug messages to these destinations:

- Up to six Syslog servers
- A CLI session through direct RS-232 console, Telnet, or SSH

<table>
<thead>
<tr>
<th>Event Notification Logging</th>
<th>Automatically sends switch-level event messages to the switch’s Event Log. Debug and Syslog do not affect this operation, but add the capability of directing Event Log messaging to an external file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Debug Commands</td>
<td>all Assigns debug logging to the configured debug destination(s) for all ACL, Event Log, IP-OSPF, and IP-RIP options.</td>
</tr>
<tr>
<td></td>
<td>acl Assigns ACL Syslog logging to the debug destination(s). When there is a match with a “deny” ACE, directs the resulting message to the configured debug destination(s).</td>
</tr>
<tr>
<td></td>
<td>event Assigns standard Event Log messages to the debug destination(s). (The same messages are also sent to the switch’s Event Log, regardless of whether you enable this option.)</td>
</tr>
<tr>
<td></td>
<td>IP ospf Assigns OSPF event logging to the debug destination(s).</td>
</tr>
<tr>
<td></td>
<td>rip Assigns RIP event logging to the debug destination(s).</td>
</tr>
<tr>
<td></td>
<td>Ildp Assigns LLDP debug logging to the debug destination(s).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Debug Destinations</th>
<th>Destination logging</th>
<th>Used to disable or re-enable Syslog logging if one or more Syslog servers are already configured by the separate logging &lt;ip-addr&gt; command. Optionally, also specifies the destination (facility) subsystem the Syslog servers must use.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>session</td>
<td>Assigns or re-assigns destination status to the terminal device most recently using this command to request debug output.</td>
</tr>
</tbody>
</table>

Figure C-13. Event Messaging Structure
Debug logging requires a logging destination (Syslog server and/or a session type), and involves the `logging` and `debug destination` commands. Actions you can perform with Debug and Syslog operation include:

- Configure the switch to send Event Log messages to one or more Syslog servers. Included is the option to send the messages to the User log facility (default) on the configured server(s) or to another log facility.

_Note_

As of December 2005, the `logging facility <facility-name>` option (described on page C-39) is available on these switch models:

- Series 6400cl switches
- 6200yl Switch
- Series 5400zl switches
- Series 5300xl switches
- Series 4200vl switches
- Series 4100gl switches (software release G.07.50 or greater)
- Series 3500yl switches
- Series 3400cl switches
- Series 2800 switches
- Series 2600 switches and the Switch 6108 (software release H.07.30 or greater)

For the latest feature information on ProCurve switches, visit the ProCurve Networking web site and check the latest release notes for the switch products you use.

- Configure the switch to send Event Log messages to the current management-access session (serial-connect CLI, Telnet CLI, or SSH).
- Disable all Syslog debug logging while retaining the Syslog addresses from the switch configuration. This allows you to configure Syslog messaging and then disable and re-enable it as needed.
- Display the current debug configuration. If Syslog logging is currently active, this includes the Syslog server list.
- Display the current Syslog server list when Syslog logging is disabled.

**Debug Command Operation**

As shown in figure C-13, the `debug` command performs two main functions:

- Specifies the type(s) of event messaging to send to a destination.
- Specifies the destination(s) of the selected message types.
Except as noted below, rebooting the switch returns the debug destination and debug message types to their default settings (disabled).

**Note**

Using the `logging < dest-ip-addr >` command to configure a Syslog server address creates an exception to the above general operation. Refer to “Syslog Operation” on page C-38.

### Debug Types

This section describes the types of debug messages the switch can send to configured debug destinations.

**Syntax:** `[no] debug < debug-type >

- **acl**
  
  *When a match occurs on an ACL “deny” Access Control Entry (with log configured), the switch sends an ACL message to the configured debug destination(s). For more on ACLs, refer to the chapter titled “Access Control Lists” in the Advanced Traffic Management Guide for your switch.*

  * (Default: Disabled)

- **all**

  *Configures the switch to send all debug types to the configured debug destination(s). (Default: Disabled)*

- **event**

  *Configures the switch to send Event Log messages to the configured debug destination(s). Note: This has no effect on event notification messages the switch routinely sends to the Event Log itself. Also, this debug type is automatically enabled in these cases:
  
  - If there is currently no Syslog server address configured and you use `logging < ip-addr >` to configure an address.
  - If there is currently at least one Syslog server address configured and the switch is rebooted or reset.*

- **ip**

  *Enables all IP-OSPF message types for the configured destinations.*
Troubleshooting
Debug and Syslog Messaging Operation

lldp

*Enables all LLDP message types for the configured destinations.*

**Syntax:**

```
[no] debug < debug-type > (Continued)
```

```
ip [ ospf < adj | event | flood | lsa-generation | packet | retransmission | spf > ]
```

*For the configured debug destination(s):*

```
opf < adj | event | flood | lsa-generation | packet | retransmission | spf > — Enables the specified IP-OSPF message type.
```

```
adj — Adjacency changes.
```

```
event — OSPF events.
```

```
flood — Information on flood messages.
```

```
lsa-generation — New LSAs added to database.
```

```
packet — Packets sent/received.
```

```
retransmission — Retransmission timer messages.
```

```
spf — Path recalculation messages.
```

```
ip [ rip < database | event | trigger > ]
```

```
rip < database | event | trigger > > — Enables the specified RIP message type for the configured destination(s).
```

```
database — Display database changes.
```

```
event — Display RIP events.
```

```
trigger — Display trigger messages.
```

*(Default: Event (log) message type.)*
Troubleshooting
Debug and Syslog Messaging Operation

Debug Destinations

Debug enables you to disable and re-enable Syslog messaging to configured servers, and to designate a CLI session to receive messaging of any debug type.

**Syntax:** [no] debug destination < logging | session >

- **logging**
  
  This command enables Syslog logging to the configured Syslog server(s). That is, the switch sends the debug message types (specified by the `debug < debug-type >` command in the preceding section) to the configured Syslog server(s). (Default: Logging disabled)

  (To configure a Syslog server IP address, refer to “Syslog Operation” on page C-38.)

  **Note:** Debug messages from the switches covered in this guide carry a “debug” severity level. Because some Syslog servers, in their default configuration, ignore Syslog messages with this severity level, you should ensure that the Syslog servers you intend to receive debug messages are configured to accept the “debug” severity level. For more information, refer to “Operating Notes for Debug and Syslog” on page C-43.

- **session**
  
  Enables or disables transmission of event notification messages to the CLI session that most recently executed this command. The session can be on any one terminal emulation device with serial, Telnet, or SSH access to the CLI at the Manager level prompt (ProCurve#_ ). If more than one terminal device has a console session with the CLI, you can redirect the destination from the current device to another device. Do so by executing `debug destination session` in the CLI on the terminal device on which you now want to display event messages.

  Event message types received on the selected CLI session are those specified by the `debug < debug-type >` command. (Refer to “Debug Types” on page C-35.)
Syslog Operation

Syslog is a client-server logging tool that allows a client switch to send event notification messages to a networked device operating with Syslog server software. Messages sent to a Syslog server can be stored to a file for later debugging analysis. Use of Syslog requires that you set up a Syslog server application on a networked host accessible to the switch. (Refer to the documentation for the Syslog server application you select.) Except as described below, you must use the `debug` command to specify the message types the switch sends to the configured Syslog server(s).

**Syntax:**

```
[no] logging < syslog-ip-addr >
```

Enables or disables Syslog messaging to the specified IP address. You can configure up to six addresses. If you configure an address when none are already configured, this command enables destination logging (Syslog) and the Event debug type. Thus, at a minimum, the switch begins sending Event Log messages to the configured Syslog server(s). The ACL, IP-OSPF, and/or IP-RIP message types will also be sent to the Syslog server(s) if they are currently enabled debug types. (Refer to “Debug Types” on page C-35.)

*no logging* removes all currently configured Syslog logging destinations from the switch.

*no logging < syslog-ip-address>* removes only the specified Syslog logging destination from the switch.

If you use the “*no*” form of the command to delete the only remaining logging address, debug destination logging is disabled on the switch, but the Event debug type is not changed from its current setting.

To block messages to the configured Syslog server(s) from any currently enabled debug type, use *no debug < debug-type>*. (Refer to “Debug Types” on page C-35.)

To disable Syslog logging on the switch without deleting the server addresses, use *no debug destination logging*. Note that, unlike the case where there are no Syslog servers configured, if one or more Syslog servers are already configured, but Syslog messaging is disabled, adding a new server address to those already configured does not re-enable Syslog messaging. In this case, you must use *debug destination logging* to re-enable Syslog messaging.
Troubleshooting
Debug and Syslog Messaging Operation

Syntax: [no] logging facility < facility-name >

The logging facility specifies the destination subsystem the Syslog server(s) must use. (All configured Syslog servers must use the same subsystem.) ProCurve recommends the default (user) subsystem unless your application specifically requires another subsystem. Options include:

- **user** (the default) — Random user-level messages
- **kern** — Kernel messages
- **mail** — Mail system
- **daemon** — System daemons
- **auth** — Security/Authorization messages
- **syslog** — Messages generated internally by Syslog
- **lpr** — Line-Printer subsystem
- **news** — Netnews subsystem
- **uucp** — uucp subsystem
- **cron** — cron/at subsystem
- **sys9** — cron/at subsystem
- **sys10** - **sys14** — Reserved for system use
- **local10** - **local17** — Reserved for system use

For a listing of applicable ProCurve switches, refer to the Note on page C-34.

Viewing the Debug Configuration

Syntax: show debug

This command displays the currently configured debug logging destination(s) and type(s). For examples of show debug output, refer to figure C-14 on page C-41.

Steps for Configuring Debug and Syslog Messaging

1. Skip this step if you do not want to use a Syslog server.

   If you want a Syslog server as a destination for debug messaging:
   a. Use this command to configure the Syslog server IP address and enable Syslog logging:

      ProCurve(config)# logging <ip-addr>
Using this command when there are no Syslog server IP addresses already configured enables both debug messaging to a Syslog server and the Event debug-type, which means that the switch begins sending Event Log messages to the server, regardless of other debug types that may be configured.

b. Use the command in step “a” to configure any additional Syslog servers you want to use, up to a total of six. (When multiple server IP addresses are configured, the switch sends the selected debug message types to all such addresses.)

c. If you want Event Log messages sent to the Syslog server, skip this step. Otherwise, use this command to block Event Log messages to the server:

```plaintext
ProCurve# no debug event
```

2. If you do not want a CLI session for a destination, skip this step.

Otherwise, from the device to which you want the switch to send debug messages:

a. Use a serial, Telnet, or SSH connection to access the switch’s CLI.

b. Execute this command:

```plaintext
ProCurve# debug destination session
```

3. Enable the debug types for which you want messages sent to the Syslog server(s) and/or the current session device:

```plaintext
ProCurve# debug < acl | all | event | ip [ospf-opt]>
```

Repeat this step if necessary to enable multiple debug types.
**Example:** Suppose that there are no Syslog servers configured on the switch (the default). Configuring one Syslog server enables debug logging to that server and also enables Event Log messages to be sent to the server.

![Figure C-14. Example of Configuring Basic Syslog Operation](image)

Note that after you enable Syslog logging, if you do not want Event Log messages sent to the Syslog server(s), you can block such messages by executing `no debug event`. (This has no effect on standard logging of messages in the switch’s Event Log.)
Example. Suppose that you want to:

■ Configure Syslog logging of ACL and IP-OSPF packet messages on a Syslog server at 18.38.64.164 (with user as the default logging facility).

■ Also display these messages in the CLI session of your terminal device’s management access to the switch.

■ Prevent the Switch's standard Event Log messages from going to the Syslog server and the CLI.

Assuming the debug/Syslog feature is disabled on the switch, you would use the commands shown in figure C-15 to configure the above operation.

```
ProCurve(config)# config
ProCurve(config)# logging 10.38.64.164
ProCurve(config)# show debug
Debug Logging
Destination:
  Logging --
    10.38.64.164
  Enabled debug types:
  event
ProCurve(config)# no debug event
ProCurve(config)# debug acl
ProCurve(config)# debug ip ospf packet
ProCurve(config)# debug destination session
ProCurve(config)# show debug
Debug Logging
Destination:
  Logging --
    10.38.64.164
  Facility = user
Session
  Enabled debug types
  ip ospf packet
  acl log
```

Figure C-15. Example Debug/Syslog Configuration for Multiple Types and Destinations
 Operating Notes for Debug and Syslog

■ **Rebooting the Switch or pressing the Reset button resets the Debug Configuration.**

<table>
<thead>
<tr>
<th>Debug Option</th>
<th>Effect of a Reboot or Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging (destination)</td>
<td>If any Syslog server IP addresses are in the startup-config file, they are saved across a reboot and the logging destination option remains enabled. Otherwise, the logging destination is disabled.</td>
</tr>
<tr>
<td>Session (destination)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>ACL (event type)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>All (event type)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Event (event type)</td>
<td>If a Syslog server is configured in the startup-config file, resets to enabled, regardless of prior setting. Disabled if no Syslog server is configured.</td>
</tr>
<tr>
<td>IP (event type)</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

■ **Debug commands do not affect message output to the Event Log.**
As a separate option, invoking debug with the **event** option causes the switch to send Event Log messages to whatever debug destination(s) you configure (session and/or logging), as well as to the Event Log.

■ **Ensure that your Syslog server(s) will accept Debug messages.** All Syslog messages resulting from debug operation carry a “debug” severity. If you configure the switch to transmit debug messages to a Syslog server, ensure that the server’s Syslog application is configured to accept the “debug” severity level. (The default configuration for some Syslog applications ignores the “debug” severity level.)
Diagnostic Tools

Diagnostic Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Auto negotiation</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Ping Test</td>
<td>n/a</td>
<td>—</td>
<td>page C-47</td>
<td>page C-46</td>
</tr>
<tr>
<td>Link Test</td>
<td>n/a</td>
<td>—</td>
<td>page C-47</td>
<td>page C-46</td>
</tr>
<tr>
<td>Display Config File</td>
<td>n/a</td>
<td>—</td>
<td>page C-49</td>
<td>page C-49</td>
</tr>
<tr>
<td>Admin. and Troubleshooting Commands</td>
<td>n/a</td>
<td>—</td>
<td>page C-51</td>
<td>—</td>
</tr>
<tr>
<td>Factory-Default Config</td>
<td>page C-55 (Buttons)</td>
<td>—</td>
<td>page C-55</td>
<td>—</td>
</tr>
<tr>
<td>Port Status</td>
<td>n/a</td>
<td>pages B-10 and B-11</td>
<td>pages B-10 and B-11</td>
<td>pages B-10 and B-11</td>
</tr>
</tbody>
</table>

Port Auto-Negotiation

When a link LED does not light (indicating loss of link between two devices), the most common reason is a failure of port auto-negotiation between the connecting ports. If a link LED fails to light when you connect the switch to a port on another device, do the following:

1. Ensure that the switch port and the port on the attached end-node are both set to Auto mode.

2. If the attached end-node does not have an Auto mode setting, then you must manually configure the switch port to the same setting as the end-node port. Refer to Chapter 10, “Port Status and Basic Configuration”.

C-44
Ping and Link Tests

The Ping test and the Link test are point-to-point tests between your switch and another IEEE 802.3-compliant device on your network. These tests can tell you whether the switch is communicating properly with another device.

Note

To respond to a Ping test or a Link test, the device you are trying to reach must be IEEE 802.3-compliant.

Ping Test. This is a test of the path between the switch and another device on the same or another IP network that can respond to IP packets (ICMP Echo Requests).

Link Test. This is a test of the connection between the switch and a designated network device on the same LAN (or VLAN, if configured). During the link test, IEEE 802.2 test packets are sent to the designated network device in the same VLAN or broadcast domain. The remote device must be able to respond with an 802.2 Test Response Packet.
Web: Executing Ping or Link Tests

**Figure C-16. Link and Ping Test Screen on the Web Browser Interface**

**Successes** indicates the number of Ping or Link packets that successfully completed the most recent test.

**Failures** indicates the number of Ping or Link packets that were unsuccessful in the last test. Failures indicate connectivity or network performance problems (such as overloaded links or devices).

**Destination IP/MAC Address** is the network address of the target, or destination, device to which you want to test a connection with the switch. An IP address is in the `X.X.X.X` format where `X` is a decimal number between 0 and 255. A MAC address is made up of 12 hexadecimal digits, for example, 0060b0-080400.
Troubleshooting
Diagnostic Tools

Number of Packets to Send is the number of times you want the switch to attempt to test a connection.

Timeout in Seconds is the number of seconds to allow per attempt to test a connection before determining that the current attempt has failed.

To halt a Link or Ping test before it concludes, click on the Stop button. To reset the screen to its default settings, click on the Defaults button.

CLI: Ping or Link Tests

Ping Tests. You can issue single or multiple ping tests with varying repetitions and timeout periods. The defaults and ranges are:

- Repetitions: 1 (1 - 999)
- Timeout: 5 seconds (1 - 256 seconds)

Syntax: ping <ip-address> [repetitions <1 - 999>] [timeout <1 - 256>]

<table>
<thead>
<tr>
<th>Operation</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Ping Operation</td>
<td>ProCurve &gt; ping 10.28.227.103</td>
</tr>
<tr>
<td></td>
<td>10.28.227.103 is alive, time = 15 ms</td>
</tr>
<tr>
<td>Ping with Repetitions</td>
<td>ProCurve &gt; ping 10.28.227.103 repetitions 3</td>
</tr>
<tr>
<td></td>
<td>10.28.227.103 is alive, iteration 1, time = 15 ms</td>
</tr>
<tr>
<td></td>
<td>10.28.227.103 is alive, iteration 2, time = 15 ms</td>
</tr>
<tr>
<td></td>
<td>10.28.227.103 is alive, iteration 3, time = 15 ms</td>
</tr>
<tr>
<td>Ping with Repetitions and Timeout</td>
<td>ProCurve &gt; ping 10.28.227.103 repetitions 3 timeout 2</td>
</tr>
<tr>
<td></td>
<td>10.28.227.103 is alive, iteration 1, time = 15 ms</td>
</tr>
<tr>
<td></td>
<td>10.28.227.103 is alive, iteration 2, time = 10 ms</td>
</tr>
<tr>
<td></td>
<td>10.28.227.103 is alive, iteration 3, time = 15 ms</td>
</tr>
<tr>
<td>Ping Failure</td>
<td>ProCurve &gt; ping 10.28.227.105</td>
</tr>
<tr>
<td></td>
<td>Target did not respond.</td>
</tr>
</tbody>
</table>

Figure C-17. Examples of Ping Tests

To halt a ping test before it concludes, press [Ctrl] [C].
**Link Tests.** You can issue single or multiple link tests with varying repetitions and timeout periods. The defaults are:

- Repeated: 1 (1 - 999)
- Timeout: 5 seconds (1 - 256 seconds)

**Syntax:**
\[
\text{link} < \text{mac-address}> \ [\text{repetitions} < 1 - 999>] \ [\text{timeout} < 1 - 256>]
\]

\[[\text{vlan} < \text{vlan-id}>]\]

---

**Figure C-18. Example of Link Tests**
Displaying the Configuration File

The complete switch configuration is contained in a file that you can browse from either the web browser interface or the CLI. It may be useful in some troubleshooting scenarios to view the switch configuration.

CLI: Viewing the Configuration File

Using the CLI, you can display either the running configuration or the startup configuration. (For more on these topics, refer to appendix C, “Switch Memory and Configuration”.)

**Syntax:** write terminal

 Displays the running configuration.

show config

 Displays the startup configuration.

show running-config

 Displays the running-config file.

Web: Viewing the Configuration File

To display the running configuration, through the web browser interface:

1. Click on the **Diagnostics** tab.
2. Click on [Configuration Report]
3. Use the right-side scroll bar to scroll through the configuration listing.

Listing Switch Configuration and Operation Details

The **show tech** command outputs, in a single listing, switch operating and running configuration details from several internal switch sources, including:

- Image stamp (software version data)
- Running configuration
- Event Log listing
- Boot History
- Port settings
- Status and counters — port status
Troubleshooting
Diagnostic Tools

- IP routes
- Status and counters — VLAN information
- GVRP support
- Load balancing (trunk and LACP)

**Syntax:**  show tech

Executing `show tech` outputs a data listing to your terminal emulator. However, using your terminal emulator’s text capture features, you can also save `show tech` data to a text file for viewing, printing, or sending to an associate. For example, if your terminal emulator is the Hyperterminal application available with Microsoft® Windows® software, you can copy the show tech output to a file and then use either Microsoft Word or Notepad to display the data. (In this case, Microsoft Word provides the data in an easier-to-read format.)

**To Copy show tech output to a Text File.** This example uses the Microsoft Windows terminal emulator. To use another terminal emulator application, refer to the documentation provided with that application.

1. In Hyperterminal, click on **Transfer | Capture Text...**

![Capture Text](image1)

**Figure C-19. The Capture Text window of the Hyperterminal Application**

2. In the **File** field, enter the path and file name under which you want to store the `show tech` output.

![Capture Text](image2)

**Figure C-20. Example of a Path and Filename for Creating a Text File from show tech Output**

3. Click **[Start]** to create and open the text file.
4. Execute **show tech**:

   ProCurve# show tech

   a. Each time the resulting listing halts and displays -- MORE --, press the Space bar to resume the listing.

   b. When the CLI prompt appears, the show tech listing is complete. At this point, click on **Transfer | Capture Text | Stop** in HyperTerminal to stop copying data into the text file created in the preceding steps.

**Note**

Remember to do the above step to stop HyperTerminal from copying into the text file. Otherwise, the text file remains open to receiving additional data from the HyperTerminal screen.

5. To access the file, open it in Microsoft Word, Notepad, or a similar text editor.

**CLI Administrative and Troubleshooting Commands**

These commands provide information or perform actions that you may find helpful in troubleshooting operating problems with the switch.

**Note**

For more on the CLI, refer to chapter 4, “Using the Command Line Interface (CLI)”.

**Syntax:** show version

*Shows the software version currently running on the switch, and the flash image from which the switch booted (primary or secondary).*

show boot-history

*Displays the switch shutdown history.*

show history

*Displays the current command history.*

[no] page

*Toggles the paging mode for display commands between continuous listing and per-page listing.*
Traceroute Command

The **traceroute** command enables you to trace the route from the switch to a host address.

This command outputs information for each (router) hop between the switch and the destination address. Note that every time you execute **traceroute**, it uses the same default settings unless you specify otherwise for that instance of the command.

**Syntax:**  \texttt{traceroute < ip-address >}

Lists the IP address of each hop in the route, plus the time in microseconds for the **traceroute** packet reply to the switch for each hop.

To halt an ongoing traceroute search, press the [Ctrl] [C] keys.

\texttt{[minttl < 1-255 >]}

For the current instance of **traceroute**, changes the minimum number of hops allowed for each probe packet sent along the route. If \texttt{minttl} is greater than the actual number of hops, then the output includes only the hops at and above the \texttt{minttl} threshold. (The hops below the threshold are not listed.) If \texttt{minttl} matches the actual number of hops, only that hop is shown in the output. If \texttt{minttl} is less than the actual number of hops, then all hops are listed. For any instance of **traceroute**, if you want a \texttt{minttl} value other than the default, you must specify that value. (Default: 1)
A Low Maxttl Causes Traceroute To Halt Before Reaching the Destination Address. For example, executing `traceroute` with its default values for a destination IP address that is four hops away produces a result similar to this:

```
ProCurve# traceroute 125.25.24.35
traceroute to 125.25.24.35,
1 10.255.120.2 10.255.120.2 0 ms 0 ms 0 ms
2 10.71.217.2 10.71.217.2 7 ms 3 ms 0 ms
3 10.243.170.1 10.243.170.1 0 ms 1 ms 0 ms
4 125.25.24.35 125.25.24.35 0 ms 3 ms 0 ms
```

**Figure C-21. Example of a Completed Traceroute Enquiry**

Continuing from the previous example (figure C-21, above), executing `traceroute` with an insufficient `maxttl` for the actual hop count produces an output similar to this:

```
traceroute to 125.25.24.35,
1 10.255.120.2 10.255.120.2 0 ms 0 ms 0 ms
2 10.71.217.2 10.71.217.2 7 ms 3 ms 0 ms
```

For the current instance of `traceroute`, changes the maximum number of hops allowed for each probe packet sent along the route. If the destination address is further from the switch than `maxttl` allows, then `traceroute` lists the IP addresses for all hops it detects up to the `maxttl` limit. For any instance of `traceroute`, if you want a `maxttl` value other than the default, you must specify that value. (Default: 30)

```
traceroute to 125.25.24.35,
1 10.255.120.2 10.255.120.2 0 ms 0 ms 0 ms
2 10.71.217.2 10.71.217.2 7 ms 3 ms 0 ms
```

For the current instance of `traceroute`, changes the timeout period the switch waits for each probe of a hop in the route. For any instance of `traceroute`, if you want a `timeout` value other than the default, you must specify that value. (Default: 5 seconds)

```
traceroute to 125.25.24.35,
1 10.255.120.2 10.255.120.2 0 ms 0 ms 0 ms
2 10.71.217.2 10.71.217.2 7 ms 3 ms 0 ms
```

For the current instance of `traceroute`, changes the number of queries the switch sends for each hop in the route. For any instance of `traceroute`, if you want a `probes` value other than the default, you must specify that value. (Default: 3)
Troubleshooting
Diagnostic Tools

Figure C-22. Example of Incomplete Traceroute Due to Low Maxttl Setting

If A Network Condition Prevents Traceroute from Reaching the Destination. Common reasons for Traceroute failing to reach a destination include:

- Timeouts (indicated by one asterisk per probe, per hop; refer to figure C-22, above.)
- Unreachable hosts
- Unreachable networks
- Interference from firewalls
- Hosts configured to avoid responding

Executing traceroute where the route becomes blocked or otherwise fails results in an output marked by timeouts for all probes beyond the last detected hop. For example with a maximum hop count of 7 (maxttl = 7), where the route becomes blocked or otherwise fails, the output appears similar to this:

![ProCurve# traceroute 107.64.197.100 maxttl 7
traceroute to 107.64.197.100,
1 hop min, 7 hops max, 5 sec. timeout, 3 probes
1 10.255.120.2 0 ms 0 ms 0 ms
2 10.71.217.2 0 ms 0 ms 0 ms
3 10.243.170.1 0 ms * 0 ms
4 * * *
5 * * *
6 * * *
7 * * *

An asterisk indicates a timeout without finding the next hop.

Figure C-23. Example of Traceroute Failing to Reach the Destination Address
Restoring the Factory-Default Configuration

As part of your troubleshooting process, it may become necessary to return the switch configuration to the factory default settings. This process momentarily interrupts the switch operation, clears any passwords, clears the console Event Log, resets the network counters to zero, performs a complete self test, and reboots the switch into its factory default configuration including deleting an IP address. There are two methods for resetting to the factory-default configuration:

- CLI
- Clear/Reset button combination

Note

ProCurve recommends that you save your configuration to a TFTP server before resetting the switch to its factory-default configuration. You can also save your configuration via Xmodem, to a directly connected PC.

CLI: Resetting to the Factory-Default Configuration

This command operates at any level except the Operator level.

Syntax: erase startup-configuration

*Deletestartup-config file in flash so that the switch will reboot with its factory-default configuration.*

Note

The erase startup-config command does not clear passwords.

Clear/Reset: Resetting to the Factory-Default Configuration

To execute the factory default reset, perform these steps:

1. Using pointed objects, simultaneously press both the Reset and Clear buttons on the front of the switch.

2. Continue to press the Clear button while releasing the Reset button.
3. When the Self Test LED begins to flash, release the Clear button. 
   The switch will then complete its self test and begin operating with the 
   configuration restored to the factory default settings.

---

**Restoring a Flash Image**

The switch can lose its operating system if either the primary or secondary 
flash image location is empty or contains a corrupted OS file and an operator 
uses the `erase flash` command to erase a good OS image file from the opposite 
flash location.

**To Recover from an Empty or Corrupted Flash State.** Use the switch’s 
console serial port to connect to a workstation or laptop computer that has 
the following:

- A terminal emulator program with Xmodem capability, such as the Hyper-
  Terminal program included in Windows PC software.
- A copy of a good OS image file for the switch.

---

**Note**

The following procedure requires the use of Xmodem, and copies an OS image 
into primary flash only.

This procedure assumes you are using HyperTerminal as your terminal emu-
lator. If you use a different terminal emulator, you may need to adapt this 
procedure to the operation of your particular emulator.

1. Start the terminal emulator program.
2. Ensure that the terminal program is configured as follows:

   - Baud rate: 9600
   - 1 stop bit
   - No parity
   - No flow control
   - 8 Bits

3. Use the Reset button to reset the switch. The following prompt should 
then appear in the terminal emulator:

   Enter h or ? for help.

=>
4. Since the OS file is large, you can increase the speed of the download by changing the switch console and terminal emulator baud rates to a high speed. For example:
   a. Change the switch baud rate to 115,200 Bps.
      
      \[
      => \text{sp} \ 115200
      \]
   b. Change the terminal emulator baud rate to match the switch speed:
      i. In HyperTerminal, select \textit{Call \& Disconnect}.
      ii. Select \textit{File \& Properties}.
      iii. Click on \textit{Configure}.
      iv. Change the baud rate to \textbf{115200}.
      v. Click on \textbf{OK}. In the next window, click on \textbf{OK} again.
      vi. Select \textit{Call \& Connect}.
      vii. Press \textbf{[Enter]} one or more times to display the => prompt.

5. Start the Console Download utility by typing \textbf{do} at the => prompt and pressing \textbf{[Enter]}:

\[
=> \textbf{do}
\]

6. You will then see this prompt:

\textit{You have invoked the console download utility.}
\textit{Do you wish to continue? (Y/N)\_} 

7. At the above prompt:
   a. Type \textbf{Y} (for Yes)
   b. Select \textit{Transfer \& File} in HyperTerminal.
   c. Enter the appropriate filename and path for the OS image.
   d. Select the \textbf{Xmodem} protocol (and not the 1k Xmodem protocol).
   e. Click on \textbf{Send}.

If you are using HyperTerminal, you will see a screen similar to the following to indicate that the download is in progress:
Figure C-24. Example of Xmodem Download in Progress

8. When the download completes, the switch reboots from primary flash using the OS image you downloaded in the preceding steps, plus the most recent startup-config file.
MAC Address Management

Contents

Overview ................................................................. D-2
Determining MAC Addresses ........................................ D-3
   Menu: Viewing the Switch's MAC Addresses ................. D-4
   CLI: Viewing the Port and VLAN MAC Addresses .......... D-5
Viewing the MAC Addresses of Connected Devices .......... D-7
Overview

The switch assigns MAC addresses in these areas:

- For management functions, one Base MAC address is assigned to the default VLAN (VID = 1). (All VLANs on the switches covered in this guide use the same MAC address.)

- For internal switch operations: One MAC address per port (Refer to “CLI: Viewing the Port and VLAN MAC Addresses” on page D-5.)

MAC addresses are assigned at the factory. The switch automatically implements these addresses for VLANs and ports as they are added to the switch.

Note

The switch’s base MAC address is also printed on a label affixed to the switch.
Determining MAC Addresses

**MAC Address Viewing Methods**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>view switch’s base (default vlan) MAC address and the addressing for any added VLANs</td>
<td>n/a</td>
<td>D-4</td>
<td>D-5</td>
<td>—</td>
</tr>
<tr>
<td>view port MAC addresses (hexadecimal format)</td>
<td>n/a</td>
<td>—</td>
<td>D-5</td>
<td>—</td>
</tr>
</tbody>
</table>

- **Use the menu interface** to view the switch’s base MAC address and the MAC address assigned to any VLAN you have configured on the switch. (The same MAC address is assigned to VLAN1 and all other VLANs configured on the switch.)

**Note**

The switch’s base MAC address is used for the default VLAN (VID = 1) that is always available on the switch. This is true for dynamic VLANs as well; the base MAC address is the same across all VLANs.

- **Use the CLI** to view the switch’s port MAC addresses in hexadecimal format.
Menu: Viewing the Switch’s MAC Addresses

The Management Address Information screen lists the MAC addresses for:

- Base switch (default VLAN; VID = 1)
- Any additional VLANs configured on the switch.

Also, the Base MAC address appears on a label on the back of the switch.

**Note**

The Base MAC address is used by the first (default) VLAN in the switch. This is usually the VLAN named “DEFAULT_VLAN” unless the name has been changed (by using the VLAN Names screen). On the switches covered in this guide, the VID (VLAN identification number) for the default VLAN is always “1”, and cannot be changed.

To View the MAC Address (and IP Address) assignments for VLANs Configured on the Switch:

1. From the Main Menu, Select
   1. Status and Counters
   2. Switch Management Address Information

   If the switch has only the default VLAN, the following screen appears. If the switch has multiple static VLANs, each is listed with its address data.

![Status and Counters - Management Address Information](image)

*Figure D-1. Example of the Management Address Information Screen*
CLI: Viewing the Port and VLAN MAC Addresses

The MAC address assigned to each switch port is used internally by such features as Flow Control and the spanning-tree protocol. Using the `walkmib` command to determine the MAC address assignments for individual ports can sometimes be useful when diagnosing switch operation.

<table>
<thead>
<tr>
<th>Switch Series</th>
<th>MAC Address Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5400zl</td>
<td>The switch allots 24 MAC addresses per slot. For a given slot, if a four-port module is installed, then the switch uses the first four MAC addresses in the allotment for that slot, and the remaining 18 MAC addresses are unused. If a 24-port module is installed, the switch uses the first 24 MAC addresses in the allotment, and so-on.</td>
</tr>
<tr>
<td>3500yl</td>
<td>The switch allots 48 MAC addresses for the fixed ports and 4 MAC addresses for the ports supported in the module slot.</td>
</tr>
<tr>
<td>6200yl</td>
<td>The switch allots 24 MAC addresses for the fixed ports and 4 MAC addresses for the ports supported in the module slot.</td>
</tr>
<tr>
<td>All Models</td>
<td>The switch’s base MAC address is assigned to VLAN (VID) 1 and appears in the <code>walkmib</code> listing after the MAC addresses for the ports. (All VLANs in the switch have the same MAC address.)</td>
</tr>
</tbody>
</table>

To display the switch’s MAC addresses, use the `walkmib` command at the command prompt:

```
Note
```

This procedure displays the MAC addresses for all ports and existing VLANs in the switch, regardless of which VLAN you select.

1. If the switch is at the CLI Operator level, use the `enable` command to enter the Manager level of the CLI.
2. Type the following command to display the MAC address for each port on the switch:

   ProCurve# walkmib ifPhysAddress

   (The above command is not case-sensitive.)

For example, on a 5406zl switch with the following module configuration shows MAC address assignments similar to those shown in figure D-2:

- a 4-port module in slot A, a 24-port module in slot C, and no modules in slots B and D
- two non-default VLANs configured
MAC Address Management
Determining MAC Addresses

Figure D-2. Example of Port MAC Address Assignments on a Switch

ProCurve# walkmib ifphysaddress
ifPhysAddress.1 = 00 12 79 88 b1 ff
ifPhysAddress.2 = 00 12 79 88 b1 fe
ifPhysAddress.3 = 00 12 79 88 b1 fd
ifPhysAddress.4 = 00 12 79 88 b1 fc
ifPhysAddress.49 = 00 12 79 88 b1 cf
ifPhysAddress.50 = 00 12 79 88 b1 ce
ifPhysAddress.51 = 00 12 79 88 b1 cd
ifPhysAddress.52 = 00 12 79 88 b1 cc
ifPhysAddress.53 = 00 12 79 88 b1 cb
ifPhysAddress.54 = 00 12 79 88 b1 ca
ifPhysAddress.55 = 00 12 79 88 b1 c9
ifPhysAddress.56 = 00 12 79 88 b1 c8
ifPhysAddress.57 = 00 12 79 88 b1 c7
ifPhysAddress.58 = 00 12 79 88 b1 c6
ifPhysAddress.59 = 00 12 79 88 b1 c5
ifPhysAddress.60 = 00 12 79 88 b1 c4
ifPhysAddress.61 = 00 12 79 88 b1 c3
ifPhysAddress.62 = 00 12 79 88 b1 c2
ifPhysAddress.63 = 00 12 79 88 b1 c1
ifPhysAddress.64 = 00 12 79 88 b1 c0
ifPhysAddress.65 = 00 12 79 88 b1 bf
ifPhysAddress.66 = 00 12 79 88 b1 be
ifPhysAddress.67 = 00 12 79 88 b1 bd
ifPhysAddress.68 = 00 12 79 88 b1 bc
ifPhysAddress.69 = 00 12 79 88 b1 bb
ifPhysAddress.70 = 00 12 79 88 b1 ba
ifPhysAddress.71 = 00 12 79 88 b1 b9
ifPhysAddress.72 = 00 12 79 88 b1 b8
ifPhysAddress.362 = 00 12 79 88 a1 00
ifPhysAddress.461 = 00 12 79 88 a1 00
ifPhysAddress.488 = 00 12 79 88 a1 00
ifPhysAddress.4456 =

ifPhysAddress.1 - 4: Ports A1 - A4 in Slot A
(Addresses 5 - 24 in slot A are unused.)

ifPhysAddress.49 - 72: Ports C1 - C24 in Slot C
(In this example, there is no module in slot B.)

ifPhysAddress.362 Base MAC Address (MAC Address for default VLAN; VID = 1)

ifPhysAddress.461 and 488
Physical addresses for non-default VLANs configured on the switch. On the switches covered by this manual, all VLANs use the same MAC address as the Default VLAN. Refer to "Multiple VLAN Considerations" in the "Static Virtual LANs (VLANs)" chapter of the Advanced Traffic Management Guide for your switch.
Viewing the MAC Addresses of Connected Devices

**Syntax:** show mac-address [ \| mac-addr \| ]

Lists the MAC addresses of the devices the switch has detected, along with the number of the specific port on which each MAC address was detected.

[ port-list ]

Lists the MAC addresses of the devices the switch has detected, on the specified port(s).

[ mac-addr ]

Lists the port on which the switch detects the specified MAC address. Returns the following message if the specified MAC address is not detected on any port in the switch:

MAC address <mac-addr> not found.

[ vlan <vid> ]

Lists the MAC addresses of the devices the switch has detected on ports belonging to the specified VLAN, along with the number of the specific port on which each MAC address was detected.

To list the MAC addresses of devices the switch has detected, use the **show mac-address** command.
MAC Address Management
Viewing the MAC Addresses of Connected Devices

—This page is intentionally unused—
Monitoring Resources

Contents

Monitored Resources ....................................................... E-2
  General Resource Usage ............................................ E-2
  Displaying the Current Resource State ......................... E-2

Resource Usage .......................................................... E-5
  Limits on New Configuration, IDM, and Virus-Throttling
  Instances If Full Resource Use Occurs ......................... E-6
Monitored Resources

The switch provides resource availability and current usage data for the following software features:

- ACLs (VLAN-based)
- QoS (Quality-of-Service)
- IDM (Identity-Driven Management) assignment of port-based ACLs through RADIUS authentication
- virus throttling (using connection-rate filtering)
- ICMP rate-limiting
- Management VLAN

General Resource Usage

QoS, ICMP, Management VLAN, and VLAN-based ACL resource consumption is based on how these features are currently configured in the switch. IDM and virus-throttling resource consumption is based on the following:

- **IDM**: The port-based ACLs currently configured by a RADIUS server for an authenticated client determine the current resource consumption for this feature on the applicable slot (5400zl switches) or port group (3500yl or 6200yl switches). When a client session ends, the resources in use for that client become available for other uses.

- **Virus Throttling (Connection-Rate Filtering)**: A virus-throttling configuration on the switch does not affect switch resources unless traffic behavior has triggered either a throttling or blocking action on the traffic from one or more clients. When the throttling action ceases or a blocked client is unblocked, the resources used for that action are released.

Displaying the Current Resource State

Both options for the following command produce the same output.

**Syntax:** `show < qos | access-list > resources`

Displays the status of internal resources (rules and TCP/UDP application port ranges) available on the switch.
For example, figure E-E1 shows the resource configuration for a switch configured with ACL, QoS, ICMP, and Management VLAN features. Note that the switch is also configured for virus throttling and is either blocking or throttling routed traffic that is exhibiting a high rate of connection requests.

In this example, the “Rules Used” columns show that configured ACL, QoS, and Management VLAN resources, as well as the currently active blocking or throttling of a client by the virus-throttling feature, all cause identical rule resource consumption on each populated slot in the switch. At the same time, there is authenticated client usage of IDM resources on slot B, and ICMP rate-limiting usage of different resource levels on slots A, B, and D. The “Rules Available” column shows the resources available for additional feature use.

### ProCurve# show access-list resources

<table>
<thead>
<tr>
<th>Slots</th>
<th>Rules</th>
<th>ACL</th>
<th>QoS</th>
<th>IDM</th>
<th>VT</th>
<th>ICMP</th>
<th>MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3023</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>3010</td>
<td>15</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3025</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3021</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

* Application Port Ranges data indicates that the TCP/UDP port range feature is being used as a classifier in one or more ACLs. Note that ACL use of a port range on a VLAN consumes the same resources on all populated slots in the switch. However, IDM use of port ranges applies only to the slot(s) on which there are ports configured through IDM (RADIUS-based authentication).

* If insufficient port ranges are available, additional rules will be used.

**Key:**
- ACL = ACLs; QoS = Host, Subnet, or application QoS policies;
- IDM = Identity Driven Management; VT = Virus Throttling;
- ICMP = network ICMP rate limiting; MV = Management VLAN

Resource usage includes resources actually in use, or reserved for future use by the listed feature. Internal dedicated-purpose resources, such as port bandwidth limits or VLAN QoS policies, are not included.

**Figure E1. Example of Displaying Current Resource Usage on a Series 5400zl Switch**
In this example, the “Rules Used” columns show that configured ACL, QoS, and Management VLAN resources, as well as the currently active blocking or throttling of a client by the virus-throttling feature, all cause identical rule resource consumption on each switch port group. At the same time, there is authenticated client usage of IDM resources in the 25-48 switch port group, and ICMP rate-limiting usage of different resource levels in both switch port groups. The “Rules Available” column shows the resources available for additional feature use.

In this example, the “Rules Used” columns show that configured ACL, QoS, and Management VLAN resources, as well as the currently active blocking or throttling of a client by the virus-throttling feature, all cause identical rule resource consumption on each switch port group. At the same time, there is authenticated client usage of IDM resources in the 25-48 switch port group, and ICMP rate-limiting usage of different resource levels in both switch port groups. The “Rules Available” column shows the resources available for additional feature use.

ProCurve(config)# show access-list resources

<table>
<thead>
<tr>
<th>Ports</th>
<th>Rules Available</th>
<th>ACL</th>
<th>QoS</th>
<th>IDM</th>
<th>VT</th>
<th>ICMP</th>
<th>MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-24</td>
<td>3023</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>25-48</td>
<td>3010</td>
<td>15</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ports</th>
<th>Application Port Ranges</th>
<th>Application Port Ranges Used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Available*</td>
<td>ACL</td>
</tr>
<tr>
<td>1-24</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>25-48</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

* If insufficient port ranges are available, additional rules will be used.

Key:
ACL = ACLs; QoS = Host, Subnet, or application QoS policies;
IDM = Identity Driven Management; VT = Virus Throttling;
ICMP = network ICMP rate limiting; MV = Management VLAN

Resource usage includes resources actually in use, or reserved for future use by the listed feature. Internal dedicated-purpose resources, such as port bandwidth limits or VLAN QoS policies, are not included.

Figure E2. Example of Displaying Current Resource Usage on a Series 3500y! Switch
Resource Usage

Resource provisioning for (internal) rules and TCP/UDP port ranges on the switch is managed internally by the Policy Enforcement Engine, and the currently available rule and port range resources are available as shown in figure E-E1 on page E-3.

For features configured globally or per-VLAN, resource consumption applies across all slots with installed modules (5400zl switches) or across all port groups (3500yl or 6200yl switches). For features configured per-port, resource consumption applies only to the slot or port group on which the feature is configured.

Features affecting all slots or port groups include:

- VLAN-based ACLs configured on the switch
- QoS configurations
- virus throttling applied to any port (when a high connection-rate client is being throttled or blocked)
- management VLAN configuration

Features affecting only the slot(s) or port-group(s) supporting the subject port(s):

- ACLs applied per-port by IDM (RADIUS authentication)
- ICMP rate-limiting

Note that there is not necessarily a 1:1 mapping of internal rules to configured policies in the switch. As a result, monitoring resource usage is the most reliable method for keeping track of available resources. Also, some internal resources can be used by multiple features. In this case, deleting a feature configuration may not affect rule usage.
Limits on New Configuration, IDM, and Virus-Throttling Instances If Full Resource Use Occurs

The switch includes ample resources for configuring features and supporting IDM clients and virus throttling or blocking on individual clients. However, if the resources supporting these features (Figures E-E1 and E-E2) do become fully subscribed:

- The current configuration and current IDM and virus throttling instances continue to operate normally.
- The switch generates an Event Log notice that the required resources are fully subscribed.
- Some currently engaged resources must be released before any of the following can occur:
  - new configuration entries for QoS, ACLs, IDM, Virus Throttling, ICMP rate-limiting, and/or Management VLAN
  - new IDM client authentication requests *(Failure to authenticate a client presenting valid credentials may indicate insufficient resources available for the features configured for that client in the RADIUS server. Check the Event Log.)*
  - throttling or blocking of newly detected clients exhibiting high connection-rate requests *(as defined by the current virus-throttling configuration)*

Note that the switch will continue to generate Event Log notification (and SNMP trap notification, if configured) for new instances of high connection-rate behavior detected by the virus-throttling feature.
Daylight Savings Time on ProCurve Switches

This information applies to the following ProCurve switches:

- 212M  • Series 2500  • Series 5300xl
- 224M  • Series 2600  • Series 5400zl
- 1600M  • Series 2800  • Switch 6108
- 2400M  • Series 3400cl  • Switch 6200yl
- 2424M  • Series 3500yl  • Series 6400cl
- 4000M  • Series 4100gl  • ProCurve AdvanceStack Switches
- 8000M  • Series 4200vl  • ProCurve AdvanceStack Routers

ProCurve switches provide a way to automatically adjust the system clock for Daylight Savings Time (DST) changes. To use this feature you define the month and date to begin and to end the change from standard time. In addition to the value “none” (no time changes), there are five pre-defined settings, named:

- Alaska
- Canada and Continental US
- Middle Europe and Portugal
- Southern Hemisphere
- Western Europe

The pre-defined settings follow these rules:

**Alaska:**
- Begin DST at 2am the first Sunday on or after April 24th.
- End DST at 2am the first Sunday on or after October 25th.

**Canada and Continental US:**
- Begin DST at 2am the first Sunday on or after April 1st.
- End DST at 2am the first Sunday on or after October 25th.
Middle Europe and Portugal:
- Begin DST at 2am the first Sunday on or after March 25th.
- End DST at 2am the first Sunday on or after September 24th.

Southern Hemisphere:
- Begin DST at 2am the first Sunday on or after October 25th.
- End DST at 2am the first Sunday on or after March 1st.

Western Europe:
- Begin DST at 2am the first Sunday on or after March 23rd.
- End DST at 2am the first Sunday on or after October 23rd.

A sixth option named “User defined” allows you to customize the DST configuration by entering the beginning month and date plus the ending month and date for the time change. The menu interface screen looks like this (all month/date entries are at their default values):

![Figure F-1. Menu Interface with “User-Defined” Daylight Time Rule Option](image-url)
Before configuring a “User defined” Daylight Time Rule, it is important to understand how the switch treats the entries. The switch knows which dates are Sundays, and uses an algorithm to determine on which date to change the system clock, given the configured “Beginning day” and “Ending day”:

- If the configured day is a Sunday, the time changes at 2am on that day.
- If the configured day is not a Sunday, the time changes at 2am on the first Sunday after the configured day.

This is true for both the “Beginning day” and the “Ending day”.

With that algorithm, one should use the value “1” to represent “first Sunday of the month”, and a value equal to “number of days in the month minus 6” to represent “last Sunday of the month”. This allows a single configuration for every year, no matter what date is the appropriate Sunday to change the clock.
Index

Symbols
=> prompt ... C-56

Numerics
802.1X
   effect, LLDP ... 14-67
   LLDP blocked ... 14-32

A
   access
      manager ... 14-12
      operator ... 14-12
   ACL
      debug ... C-33, C-35
      gateway fails ... C-11
      resource monitor ... E-2
      troubleshooting ... C-8
   Actions line ... 3-9, 3-10, 3-11
      location on screen ... 3-9
   address table, port ... B-14
   address, network manager ... 14-4, 14-5
   advertise location ... 14-44
   alert log ... 5-20
      alert types ... 5-21
      disabling ... 5-25
      setting the sensitivity level ... 5-24
      sorting the entries ... 5-20
   arp age, default ... 8-7
   asterisk ... 3-10, 3-13, 6-26
   asterisk, in traceroute ... C-54
   authentication trap ... 14-19, 14-22
      See also SNMP.
   authentication trap, configuring ... 14-22
   authorized IP managers
      SNMP, blocking ... 14-3
   auto MDI/MDI-X configuration, display ... 10-14
   auto MDI/MDI-X operation ... 10-12, 10-14
   auto MDI/MDI-X port mode, display ... 10-14
   Auto-10 ... 12-4, 12-7, 12-18
   autonegotiate ... 14-44

B
   bandwidth
      displaying utilization ... 5-17
   boot
      See also reboot.
   boot command ... 6-4, 6-18
   boot ROM console ... A-4
   boot ROM mode ... C-56
   boot, from primary flash ... 6-19
   Bootp ... 8-2, 8-12
      Bootp table file ... 8-13
      Bootptab file ... 8-13
      effect of no reply ... C-7
      operation ... 8-13
      See also DHCP.
         using with Unix systems ... 8-13
   Bootp/DHCP differences ... 8-13
   Bootp/DHCP, LLDP ... 14-40
   broadcast limit ... 10-4, 10-12
   broadcast storm ... 12-3, C-18
   broadcast traffic, IPX ... 10-4, 10-12
   browser interface
      See web browser interface.

C
   CDP ... 14-68, 14-69, 14-70, 14-71, 14-73
   changing priority level ... 11-13
   changing threshold ... 11-13
   Clear + Reset button combination ... 6-33
   Clear button ... 5-10
      restoring factory default configuration ... C-55
   CLI
      context level ... 10-9
      moving to or from the menu ... 4-7
   command line interface
      See CLI.
   communities, SNMP ... 14-13
      viewing and configuring with the CLI ... 14-14
      viewing and configuring with the menu ... 14-13
   config files, SFTP/SCP transfer ... 6-36
   configuration ... 3-7
      Bootp ... 8-13
      comparing startup to running ... 6-6
      console ... 7-3
      copying ... A-21
      download ... A-4
   factory default ... 6-9, 8-2
IP ... 8-2
network monitoring ... B-23
permanent ... 6-7
permanent change defined ... 6-5
port ... 10-1
port trunk group ... 12-1
port, duplex ... 10-8
port, speed ... 10-8
quick ... 3-8
reboot to activate ... 3-13
restoring factory defaults ... C-55
saving from menu interface ... 3-10
serial link ... 7-3
SNMP ... 14-4, 14-5, 14-11
SNMP communities ... 14-13, 14-14
startup ... 3-10
system ... 7-10
Telnet access configuration ... 7-3
transferring ... A-21
trap receivers ... 14-19
viewing ... 6-6
web browser access ... 7-3
configuration file
  browsing for troubleshooting ... C-49
  multiple
configuration file, multiple
  after first reboot ... 6-25
  applications ... 6-22
  asterisk ... 6-26
  backupConfig ... 6-23
  change policy ... 6-27
  Clear + Reset button combination ... 6-33
  copy from tftp host ... 6-35
  copy to tftp host ... 6-35
  create new file ... 6-24, 6-30, 6-31
  current file in use ... 6-26
  default reboot from primary ... 6-28
  erasing ... 6-32
  memory assignments ... 6-25
  memory slot ... 6-23, 6-26, 6-28
  minconfig ... 6-28, 6-32
  newconfig ... 6-28
  oldConfig ... 6-25
  override reboot policy ... 6-27
  policy, override ... 6-29
  power cycle ... 6-28
  primary boot path ... 6-26
  reboot policy options ... 6-23
reboot policy, override ... 6-27
reboot process ... 6-24
reload ... 6-29
rename config file ... 6-30
reset ... 6-28
running-config file ... 6-24
running-config file operation ... 6-23
secondary boot path ... 6-26
show config file content ... 6-27
show multiple files ... 6-26
startup-config ... 6-23
startup-config file ... 6-24
transition to multiple files ... 6-25
Unable to copy ... 6-30
workingConfig ... 6-23, 6-25
xmodem from host ... 6-36
xmodem to host ... 6-36
connection-rate filtering
  resources ... E-2
console ... C-7
  configuring ... 7-3
  ending a session ... 3-5
  features ... 2-3
  Main menu ... 3-7
  navigation ... 3-9, 3-10
  operation ... 3-10
  starting a session ... 3-4
  status and counters access ... 3-7
  troubleshooting access problems ... C-5
context level
  global config ... 8-10
copy
  multiple config file, tftp ... 6-35
CPU utilization ... B-6

D
date format ... C-26
date, configure ... 7-14
debug
  overview ... C-33
  session options ... C-33
debug command
  "debug" severity and Syslog servers ... C-37, C-43
  configuring messaging ... C-39
  destinations ... C-33, C-37
  event ... C-35
  event log ... C-33, C-43

2 – Index
operating notes … C-43
OSPF … C-36
RIP … C-36
session configuration … C-37
show debug … C-39
structure … C-33
syntax … C-35
debug logging, LLDP … 14-30
default gateway … 8-3
default trunk type … 12-10
Device Passwords Window … 5-8
DHCP … 8-12
  address problems … C-7
effect of no reply … C-7
  manual gateway precedence … 8-12
DHCP/Bootp differences … 8-13
DHCP/Bootp process … 8-12
DHCP/Bootp, LLDP … 14-40
diagnostics tools … C-44
  browsing the configuration file … C-49
  ping and link tests … C-45
displaying duplex information … 14-60
DNS name … 5-4
Domain Name Server … 5-4
download … A-4
  See also switch software.
    switch-to-switch … A-17
troubleshooting … A-20
Xmodem … A-15
download software … A-17
download, TFTP … A-4, A-5
duplex advertisements … 14-42
duplicate MAC address
  See MAC address.
Dyn1
  See LACP.

F
factory default configuration
  restoring … 6-9, C-55
failure, switch software download … A-21
fault detection … 5-8
fault detection policy … 5-8, 5-24
fault detection policy, setting … 5-24
fault detection window … 5-24
fault-tolerance … 12-4
filter, source-port … 13-33
firmware version … B-6
flash memory … 3-10, 6-3
flow control
  constraints … 10-4, 10-10
  global … 10-10
  global requirement … 10-4
  jumbo packets … 13-28, 13-32
  per-port … 10-4, 10-10
flow control, effect on rate-limiting … 13-6, 13-16
flow control, status … B-11
flow control, terminal … B-11
format, date … C-26
format, time … C-26
friendly port names
  See port names, friendly.

G
gateway … 8-3, 8-5, 8-12
  routing fails … C-11
gateway (IP) address … 8-4, 8-6
gateway, manual config priority … 8-12
gateway, on primary VLAN … 8-4
giant packets … 13-35
global config level … 8-10
GMB
  See guaranteed minimum bandwidth.
guaranteed minimum bandwidth
  apportioning unallocated bandwidth … 13-21
configuration … 13-21
described … 13-19
displaying configuration … 13-5
displaying current configuration … 13-25
granularity of bandwidth settings … 13-26
operating notes … 13-26
operation … 13-19
outbound queue priority … 13-20
starving queues … 13-21

E
duplicate MAC address
  See MAC address.
edge ports … 13-3
Emergency Location Id Number … 14-25, 14-54
ending a console session … 3-5
event log … 3-7, C-26
  navigation … C-28
  severity level … C-26
  use during troubleshooting … C-26
  with debug … C-33, C-43
excessive packets … 13-35
H
Help ... 3-11, 5-13
Help line, about ... 3-9
Help line, location on screens ... 3-9
help, online inoperable ... 5-13
hop, router ... 8-10
HP Auto-MDIX feature ... 10-12
HP web browser interface ... 2-5

I
ICMP rate-limiting
  all-traffic
    See rate-limiting
cautions ... 13-10
current rate-limit configuration ... 13-12
effect of flow control ... 13-16
effect on port trunks ... 13-17
effects of ... 13-9
event log messages ... 13-14
exceeding configured rate ... 13-16
inbound rate-limiting ... 13-12
interface support ... 13-16
monitoring/mirroring ... 13-16
network application ... 13-10
no meshing ... 13-16
note on testing ... 13-15
operation ... 13-9, 13-11
optimum packet size ... 13-17
resource monitor ... E-2
spoofed ping ... 13-9
traffic filters ... 13-17
IDM
  resource monitor ... E-2
IEEE 802.1d ... C-18
IEEE P802.1AB/D9 ... 14-30
IGMP
  host not receiving ... C-13
  not working ... C-13
  statistics ... B-19
inactivity timeout ... 7-4
Inbound Telnet Enabled parameter ... C-6
Inconsistent value ... 14-37
Intelligent Edge switch features ... 1-9
invalid input ... 4-12
IP ... 8-7
  CLI access ... 8-6
  configuration ... 8-2
DHCP/Bootp ... 8-2
duplicate address ... C-7
duplicate address, DHCP network ... C-7
effect when address not used ... 8-11
features available with and without ... 8-11
gateway ... 8-3
gateway (IP) address ... 8-4
menu access ... 8-5
multiple addresses in VLAN ... 8-3, 8-8
subnet ... 8-3, 8-8
subnet mask ... 8-2, 8-6
time server address ... 9-9, 9-19
Time-To-Live ... 8-7, 8-10
TTL ... 8-7, 8-10
using for web browser interface ... 5-4
web access ... 8-10
IP address
  for SNMP management ... 14-3
  multiple in a VLAN ... 8-8
  removing or replacing ... 8-10
IP preserve
  DHCP server ... 8-15
  overview ... 8-15
  rules, operating ... 8-15
  summary of effect ... 8-19
IPX
  network number ... B-7
IPX broadcast traffic ... 10-4, 10-12

J
Java ... 5-4, 5-5
jumbo packets
  configuration ... 13-29
  excessive inbound ... 13-32
  flow control ... 13-28, 13-32
  GVRP operation ... 13-28
  management VLAN ... 13-32
  maximum size ... 13-27
  meshing ... 13-28
  MTU ... 13-27
  port adds and moves ... 13-28
  port speed ... 13-28
  security concerns ... 13-33
  standard MTU ... 13-27
  switch mesh domain ... 13-34
  through non-jumbo ports ... 13-34
  traffic sources ... 13-28
troubleshooting ... 13-35
VLAN tag ... 13-27
voice VLAN ... 13-32

K
kill command ... 7-9

L
LACP
802.1X, not allowed ... 12-22
active ... 12-15
blocked ports ... 12-24
CLI access ... 12-11
default port operation ... 12-21
described ... 12-6, 12-18
Dyn1 ... 12-7
dynamic ... 12-19
enabling dynamic trunk ... 12-15
full-duplex required ... 12-4, 12-18
IGMP ... 12-23
monitoring static trunk ... B-23
no half-duplex ... 12-25
operation not allowed ... C-13
overview of port mode settings ... 12-4
passive ... 12-15
removing port from active trunk ... 12-16
restrictions ... 12-22
standby link ... 12-19
status, terms ... 12-21
STP ... 12-23
trunk limit ... 12-19
VLANs ... 12-23
with 802.1X ... 12-22
with port security ... 12-22
learning bridge ... 8-2
license, software ... 1-9
limit, broadcast ... 10-12
link speed, port trunk ... 12-3
link test ... C-45
  for troubleshooting ... C-45
link, serial ... 7-3
LLDP
  802.1D-compliant switch ... 14-67
  802.1X blocking ... 14-32
  802.1X effect ... 14-67
  active port ... 14-25
adjacent device ... 14-25
advertisement ... 14-25
advertisement content ... 14-40
advertisement data ... 14-58
advertisement, mandatory data ... 14-40
advertisement, optional data ... 14-41
advertisements, delay interval ... 14-36
CDP neighbor data ... 14-68
chassis ID ... 14-40
chassis type ... 14-40
clear statistics counters ... 14-64
cmparison with CDP data fields ... 14-69
configuration options ... 14-28
configuring optional data ... 14-41
data options ... 14-29
data read options ... 14-30
data unit ... 14-26
debug logging ... 14-30
default configuration ... 14-32
DHCP/Bootp operation ... 14-31
disable, per-port ... 14-39
display neighbor data ... 14-61
ELIN ... 14-25
enable/disable, global ... 14-34
features ... 14-24
general operation ... 14-27
global counters ... 14-64
holdtime multiplier ... 14-36
hub, packet-forwarding ... 14-27
IEEE P802.1AB/D9 ... 14-30
Inconsistent value ... 14-37
information options ... 14-29
invalid frames ... 14-65
IP address advertisement ... 14-31
IP address subelement ... 14-40
IP address, advertisement ... 14-67
IP address, DHCP/Bootp ... 14-40
IP address, options ... 14-40
IP address, version advertised ... 14-40
Link-Layer Discovery Protocol ... 14-24
LLDP-aware ... 14-25
LLDPDU ... 14-26
mandatory TLVs ... 14-67
MIB ... 14-27, 14-30
neighbor ... 14-26
neighbor data remaining ... 14-67
neighbor data, displaying ... 14-61
neighbor statistics ... 14-64

neighbor, maximum 14-66
operating rules 14-31
operation 14-27
optional data, configuring 14-41
outbound packet options 14-29
packet boundaries 14-27
packet dropped 14-27
packet time-to-live 14-30
packet-forwarding 14-27, 14-67
packets not forwarded 14-26
per-port counters 14-65
port description 14-41
port ID 14-40
port speed 14-42
port trunks 14-31
port type 14-40
refresh interval 14-35
reinitialization delay 14-37
remote management address 14-30
remote manager address 14-40
reset counters 14-64
rxonly 14-39
setmib, delay interval 14-36
setmib, reinit delay 14-38
show advertisement data 14-58
show commands 14-32, 14-34
show outbound advertisement 14-59
SNMP notification 14-29
SNMP traps 14-29
spanning-tree blocking 14-32
standards compatibility 14-30
statistics 14-64
system capabilities 14-41
system description 14-41
system name 14-41
terminology 14-25
time-to-live 14-28, 14-36
TLV 14-27
transmission frequency 14-28
transmission interval, change 14-35
transmit and receive 14-28
transmit/receive modes 14-28
transmit/receive modes, per-port 14-39
trap notice interval 14-39
trap notification 14-38
trap receiver, data change notice 14-38
TTL 14-28, 14-30
txonly 14-39
VLAN, untagged 14-67
walkmib 14-30
LLDPDU 14-26
LLDP-MED
- displaying speed 14-60
- ELIN 14-54
- enable or disable 14-28
- endpoint support 14-44
- fast start control 14-48
- location data 14-53
- medTlvenable 14-50
- Neighbors MIB 14-61
- topology change notification 14-46
- Voice over IP 14-43
load balancing
- See port trunk.
logging, command C-35
logical port 12-8
loop, network 12-3
lost password 5-10

M
MAC address 8-13, B-6, D-2
- displaying detected devices D-7
- duplicate C-18, C-24
- learned B-14
- per-slot or per-switch D-5
- port D-2, D-4
- same MAC, multiple VLANs D-6
- switch D-2
- VLAN D-2, D-5
- walkmib D-5
Maintenance Power Signature, defined 11-4
management
- interfaces described 2-2
- server URL 5-12, 5-13
- server URL default 5-13
management VLAN
- See VLAN.
manager access 14-12
manager password 5-8, 5-10
Manual, IP address 8-6
MDI/MDI-X configuration, display 10-14
MDI/MDI-X operation 10-12
MDI/MDI-X port mode, display 10-14
media type, port trunk 12-3
memory
  flash ... 3-10, 6-3
  startup configuration ... 3-10
menu interface
  configuration changes, saving ... 3-10
  moving to or from the CLI ... 4-7
mesh
  jumbo packets ... 13-34
  monitoring ... B-23
meshed ports, monitoring ... B-23
MIB ... 14-4
MIB listing ... 14-4
MIB, HP proprietary ... 14-4
MIB, standard ... 14-4
mirroring
  See port monitoring.
MLTS ... 14-26
monitoring
  See port monitoring.
  monitoring meshed ports ... B-23
  monitoring traffic ... B-23
  monitoring, port ... B-23
MPS, defined ... 11-4
Multiline Telephone system ... 14-26
multinetting ... 8-3, 8-8
  See also ACLs.
multiple configuration file
  See configuration file, multiple.
multiple forwarding database ... B-7, B-17
multiple VLAN ... 14-3
multi-port bridge ... 8-2

N
NANP ... 14-26
navigation, console interface ... 3-9, 3-10
navigation, event log ... C-28
network management functions ... 14-5, 14-13
network manager address ... 14-4, 14-5
network monitoring
  traffic overload ... B-23
Network Monitoring Port screen ... B-23
network slow ... C-7
North American Numbering Plan ... 14-26

O
online help ... 5-13
online help location ... 5-13
operating system
  See switch software.
operation not allowed, LACP ... C-13
operator access ... 14-12
operator password ... 5-8, 5-10
OS
  See switch software.
  version ... A-18
OSPF
  debug command ... C-36
out-of-band ... 2-3

P
password ... 5-8, 5-10
  creating ... 5-8
  delete ... 3-7, 5-10
  if you lose the password ... 5-10
  lost ... 5-10
  manager ... 5-8
  operator ... 5-8
  set ... 3-7
  setting ... 5-9
  using to access browser and console ... 5-10
PCM/PCM+
  starting web browser ... 5-4
PD ... 14-26
ping test ... C-45
  for troubleshooting ... C-45
PoE
  active ports, defined ... 11-4
  advertisements ... 14-53
  benefit of LLDP-MED ... 14-44
  changing the threshold ... 11-15
  configuration planning ... 11-23
  configure unique identifier ... 11-16
  configuring operation ... 11-13
  enable or disable operation ... 11-5, 11-14
  EPS, defined ... 11-4
  event log messages ... 11-28
  maximum load calculation ... 11-25
  messages ... 11-28
  minimum wattage required ... 11-8
  MPS, defined ... 11-4
  non-PoE device support ... 11-8
  operation on 3500yl ... 11-5
  operation on 5400zl ... 11-5
other fault … 11-21
oversubscribed … 11-4
overview of status … 11-20
PD, defined … 11-4
port identifiers … 11-16
port-number priority … 11-10
port-number priority, defined … 11-4
power supplies … 11-3
power supply failure … 11-26
power, provisioning … 11-5
prioritizing power … 11-10
priority class … 11-4, 11-10
priority class, defined … 11-4
priority policies … 11-24
priority, port … 11-8, 11-10
PSE, defined … 11-4
QoS classifiers … 11-24
related publications … 11-6
RPS, defined … 11-4
security … 11-23
setmib … 11-16, 11-17
status … 14-48
status on specific ports … 11-21
supporting pre-standard devices … 11-14
terminology … 11-4
threshold, global power … 11-7
threshold, per-slot … 11-7
threshold, power … 11-15
unneeded power … 11-8
viewing status … 11-19
VLAN assignments … 11-23
walkmib … 11-17

poll interval
See also TimeP.

Port
duplex, view … 10-7
speed, view … 10-7

port
address table … B-14
broadcast limit … 10-12
CLI access … 10-7
context level … 10-9
counters … B-11
counters, reset … B-11
fiber-optic … 10-4
MAC address … D-4, D-5
menu access … 10-5
monitoring … B-23

monitoring, static LACP trunk … B-23
traffic patterns … B-11
trunk
See port trunk.
utilization … 5-17
web browser interface … 5-17
web browser access … 10-15
Port Configuration … 10-1, 12-1
port names, friendly
configuring … 10-17
displaying … 10-18
summary … 10-16
port security
port trunk restriction … 12-3
trunk restriction … 12-8
port trunk … 12-2

See also LACP.
bandwidth capacity … 12-2
cautions … 12-3, 12-9, 12-17
CLI access … 12-11
default trunk type … 12-10
enabling dynamic LACP … 12-15
IGMP … 12-8
limit … 12-2
limit, combined … 12-19
link requirements … 12-3
logical port … 12-8
media requirements … 12-7
media type … 12-3
menu access to static trunk … 12-9
monitor port restrictions … 12-8
monitoring … B-23
nonconsecutive ports … 12-2
port security restriction … 12-8
removing port from static trunk … 12-15
requirements … 12-7
SA/DA … 12-27
spanning tree protocol … 12-8
static trunk … 12-7
static trunk, overview … 12-4
static/dynamic limit … 12-19
STP … 12-8
STP operation … 12-7
traffic distribution … 12-7
Trk1 … 12-7
trunk (non-protocol) option … 12-6
trunk option described … 12-26
Index – 9

types ... 12-6
VLAN ... 12-8
VLAN operation ... 12-7
web browser access ... 12-17
port trunk group
  interface access ... 12-1
port, active ... 14-25
port-based access control
  event log ... C-14
  LACP not allowed ... 12-22
  troubleshooting ... C-14
power interruption, effect on event log ... C-27
power supplies
  failure ... 11-26
  using like kinds ... 11-5
power-over-ethernet
  See PoE.
Power-Sourcing Equipment ... 11-4, 14-26
Premium Edge license ... 1-9
Premium Edge switch features ... 1-9
priority class, defined ... 11-4
priority of operation ... 11-5
Procurve
  support URL ... 5-13
Procurve, HP, URL ... 14-4
prompt, => ... C-56
PSAP ... 14-26
PSE ... 14-26
PSE, defined ... 11-4
Public Safety Answering Point ... 14-26
public SNMP community ... 14-5, 14-13

Q
QoS
  resource monitor ... E-2
quick configuration ... 3-8
quick start ... 1-8, 8-3

R
RADIUS, web browser access ... 5-8
rate-limiting
  caution ... 13-3
  configuration ... 13-4, 13-12
  displaying configuration ... 13-5, 13-12
  edge ports ... 13-3
  effect of flow control ... 13-6, 13-16
effect on port trunks ... 13-8, 13-17
exceeding configured rate ... 13-3, 13-8, 13-11,
  13-16
ICMP
  See ICMP rate-limiting
  intended use ... 13-3
  note on testing ... 13-7, 13-15
  operating notes ... 13-6, 13-16
  operation ... 13-3, 13-11
  optimum packet size ... 13-8, 13-17
  per-port only ... 13-3
  purpose ... 13-3
  security ... 13-3, 13-11
  traffic filters ... 13-8, 13-17
reboot ... 3-8, 3-10, 3-12
  See also boot.
reboot time ... 6-18
reboot, actions causing ... 6-4
rebooting the switch
reconfigure ... 3-10
reload ... 6-4, 6-18, 6-20
remote session, terminate ... 7-9
reset ... 3-12, 6-11
Reset button ... 6-4
  restoring factory default configuration ... C-55
reset port counters ... B-11
resetting the switch
  factory default reset ... C-55
resource monitor ... E-2
  event log ... E-6
  limits ... E-6
restricted write access ... 14-12
RFC
  See MIB.
RFC 1493 ... 14-4
RFC 1515 ... 14-4
RFC 2922 ... 14-30
RFC2737 ... 14-30
RFC2863 ... 14-30
RIP
  debug command ... C-36
RIP broadcast traffic, broadcast traffic, RIP ... 10-4,
  10-12
RMON ... 14-4
RMON groups supported ... 14-23
router
  gateway ... 8-6
router, hop ... 8-10
routing
  gateway fails ... C-11
  OSPF debug ... C-36
  RIP debug ... C-36
  traceroute ... C-52
RS-232 ... 2-3
running-config, viewing ... 6-6
  See also configuration.

S
SCP/SFTP
  session limit ... A-13
secure copy
  See SCP/SFTP.
secure FTP
  See SCP/SFTP.
secure management VLAN
  See VLAN.
security ... 5-11, 7-3
  username and password ... 5-8
  web browser access, RADIUS ... 5-8
Self Test LED
  behavior during factory default reset ... C-56
serial number ... B-6
setmib ... 11-16
setmib, delay interval ... 14-36
setmib, reinit delay ... 14-38
setting fault detection policy ... 5-24
setup screen ... 1-8, 8-3
severity code, event log ... C-26
SFTP/SCP, transfer of config files ... 6-36
show management ... 8-7, 9-9, 9-19
show power-management brief ... 11-16
show tech ... C-49
slow network ... C-7
SNMP ... 14-3
  CLI commands ... 14-12
  communities ... 14-4, 14-5, 14-12, 14-13
  Communities screen ... 14-11
  configure ... 14-4, 14-5
  IP ... 14-3
  notification, LLDP
    SNMP notification ... 14-29
  public community ... 14-5, 14-13
  setmib ... 11-16
  thresholds ... 14-19
  traps ... 14-4, 14-19
  traps, well-known ... 14-19
  walkmib ... D-5, D-6
SNMP communities
  configuring with the CLI ... 14-14
  configuring with the menu ... 14-13
SNMP trap, LLDP ... 14-38
SNMPv3
  "public" community access caution ... 14-6
  access ... 14-5
  assigning users to groups ... 14-7
  communities ... 14-11
  enable command ... 14-7
  enabling ... 14-6
  group access levels ... 14-10, 14-11
  groups ... 14-9
  network management problems with snmpv3
    only ... 14-6
  notification ... 14-16
  restricted-access option ... 14-6
  set up ... 14-5
  traps ... 14-16
  users ... 14-5
SNTP
  broadcast mode ... 9-2, 9-10
  broadcast mode, requirement ... 9-3
  configuration ... 9-4
  disabling ... 9-12
  enabling and disabling ... 9-10
  event log messages ... 9-27
  menu interface operation ... 9-27
  operating modes ... 9-2
  poll interval
    See also TimeP
  selecting ... 9-3
  show management ... 9-9
  unicast mode ... 9-3, 9-11
  unicast time polling ... 9-24
  unicast, address priority ... 9-24
  unicast, deleting addresses ... 9-26
  unicast, replacing servers ... 9-26
  viewing ... 9-4, 9-8
SNTP, manual config priority ... 8-12
software
  See switch software.
software image
  See switch software.
software version ... B-6
sorting alert log entries ... 5-20
source-port filter ... 13-33
spanning tree
  fast-uplink, troubleshooting ... C-19
  problems related to ... C-18
  show tech, copy output ... C-50
  using with port trunking ... 12-8
SSH
  TACACS exclusion ... A-13
  troubleshooting ... C-19
standard MIB ... 14-4
starting a console session ... 3-4
startup-config, viewing ... 6-6
  See also configuration.
statistics ... 3-7, B-4
statistics, clear counters ... 3-12, 6-11
status and counters
  access from console ... 3-7
status and counters menu ... B-5
status overview screen ... 5-6
subnet ... 8-3, 8-8
subnet mask ... 8-4, 8-6
  See also IP.
support
  changing default URL ... 5-13
  URL ... 5-12
  URL Window ... 5-12
switch console
  See console.
switch setup menu ... 3-8
switch software
  download using TFTP ... A-4
  download, failure indication ... A-21
  download, switch-to-switch ... A-17
  download, troubleshooting ... A-20
  download, using TFTP ... A-4
  software image ... A-3
  version ... A-6, A-16
Syslog
  configure server IP ... C-35
  configuring messaging ... C-39
  facility, user ... C-43
  logging command ... C-35, C-37
  operating notes ... C-43
  operation ... C-38
  See also debug command.
servers ... C-33
  severity, "debug" ... C-37, C-43
  system configuration screen ... 7-10
System Name parameter ... 7-11

T

TACACS
  SSH exclusion ... A-13
Telnet ... 3-4
    terminate session, kill command ... 7-9
telnet, enable/disable ... 7-4
telnet, outbound ... 7-6
telnet, problem ... C-6
terminal access, lose connectivity ... 7-7
terminal type ... 7-3
terminate remote session ... 7-9
TFTP
  download ... A-5
  threshold setting ... 14-5, 14-13
  thresholds, SNMP ... 14-19
time format ... C-26
time protocol
    selecting ... 9-3
time server ... 8-2
time zone ... 7-11, 7-14
time, configure ... 7-14
TimeP ... 8-3, 8-5
  assignment methods ... 9-2
disabling ... 9-23
  enabling and disabling ... 9-20
  manual config priority ... 8-12
  poll interval ... 9-22
  selecting ... 9-3
  server address listing ... 9-9, 9-19
  show management ... 9-19
  viewing and configuring, menu ... 9-16
  viewing, CLI ... 9-18
timesync, disabling ... 9-23
Time-To-Live ... 8-3, 8-5, 8-6, 8-10
  See also TTL
time-to-live, LLDP ... 14-28
Time-To-Live, on primary VLAN ... 8-4
TLV ... 14-27
TLVs, mandatory ... 14-67
top talker ... 12-28
traceroute
  asterisk ... C-54
  blocked route ... C-54
  fails ... C-53
  traffic monitoring ... 14-5, 14-13
traffic, monitoring ... B-23
traffic, port ... B-11
transceiver, fiber-optic ... 10-4
trap ... 5-25
  authentication ... 14-19
  authentication trap ... 14-22
  CLI access ... 14-19
  event levels ... 14-21
  limit ... 14-19
  receiver ... 14-19
  SNMP ... 14-19
trap notification ... 14-38
trap receiver ... 14-4, 14-5
  configuring ... 14-19, 14-20
troubleshooting
  ACL ... C-8
  approaches ... C-4
  browsing the configuration file ... C-49
  console access problems ... C-5
  diagnosing unusual network activity ... C-7
  diagnostics tools ... C-44
  fast-uplink ... C-18
  ping and link tests ... C-45
  restoring factory default configuration ... C-55
  spanning tree ... C-18
  switch software download ... A-20
  switch won’t reboot, shows => prompt ... C-56
  unusual network activity ... C-7
  using the event log ... C-26
  web browser access problems ... C-5
troubleshooting, SSH ... C-19
trunk
  See port trunk.
TTL ... 8-3, 8-5, 8-6, 8-7
  manual config priority ... 8-12
  on primary VLAN ... 8-4
  See also Time-To-Live.
TTL, IP ... 8-10
TTL, LLDP ... 14-28
Type-Length-Value ... 14-27
types of alert log entries ... 5-21

U
unauthorized access ... 14-22
undersize packets ... 13-35
Universal Resource Locator
  See URL.

Unix, Bootp ... 8-13
unrestricted write access ... 14-12
unusual network activity ... C-7
up time ... B-6
URL
  browser interface online help location ... 5-13
  management ... 5-13
  management server ... 5-12, 5-13
  Procurve ... 5-13, 14-4
  support ... 5-12, 5-13
  user name, using for browser or console
    access ... 5-8, 5-10
users, SNMPv3
  See SNMPv3.
  using the passwords ... 5-10
utilization, port ... 5-17

V
version, OS ... A-18
version, switch software ... A-6, A-16
view
  duplex ... 10-7
  Port speed ... 10-7
virus-throttling
  See connection-rate filtering.
VLAN ... 8-4, C-24
  address ... 14-3
  Bootp ... 8-13
  configuring Bootp ... 8-13
  device not seen ... C-23
  event log entries ... C-26
  ID ... 4-15
  link blocked ... C-18
  MAC address ... D-2, D-5
  management and jumbo packets ... 13-32
  management VLAN, resource monitor ... E-2
  management VLAN, SNMP block ... 14-3
  monitoring ... B-3, B-23
  multinet ... 8-3
  multinetting ... 8-3, 8-8
  multiple ... 14-3
  multiple IP addresses ... 8-3, 8-8
  port configuration ... C-23
  primary ... 8-3
  reboot required ... 3-8
  same MAC, multiple VLANs ... D-6
  subnet ... 8-3, 8-8
support enable/disable ... 3-8
switch software download ... A-4
tagging broadcast, multicast, and unicast traffic ... C-23
VLAN ID
   See VLAN.
VoIP ... 14-43
VT-100 terminal ... 7-3

W
walkmib ... 14-30, D-5, D-6
warranty ... 1-ii
web agent enabled ... 5-2
web agent,
   advantages ... 2-5
web browser access configuration ... 7-3
web browser enable/disable ... 7-4
web browser interface
   access parameters ... 5-8
   alert log ... 5-20
   alert log details ... 5-21
   bandwidth adjustment ... 5-18
   bar graph adjustment ... 5-18
   disable access ... 5-2
   enabling ... 5-4
   error packets ... 5-17
   fault detection policy ... 5-8, 5-24
   fault detection window ... 5-24
   features ... 2-5
   first-time install ... 5-7
   first-time tasks ... 5-7
   main screen ... 5-16
   online help ... 5-13
   online help location specifying ... 5-13
   online help, inoperable ... 5-13
   overview ... 5-16
   Overview window ... 5-16
   password lost ... 5-10
   password, setting ... 5-9
   port status ... 5-19
   port utilization ... 5-17
   port utilization and status displays ... 5-17
   screen elements ... 5-16
   security ... 5-2, 5-8
   standalone ... 5-4
   status bar ... 5-22
   status indicators ... 5-23
   status overview screen ... 5-6
   system requirements ... 5-4
   troubleshooting access problems ... C-5
   URL default ... 5-13
   URL, management server ... 5-14
   URL, support ... 5-14
   web site, HP ... 14-4
   world wide web site, HP
      See Procurve.
   write access ... 14-12
   write memory, effect on menu interface ... 3-13

X
Xmodem OS download ... A-15
—This page is intentionally unused—